Skip to main content
Log in

Unveiling lignocellulolytic trait of a goat omasum inhabitant Klebsiella variicola strain HSTU-AAM51 in light of biochemical and genome analyses

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella variicola is generally known as endophyte as well as lignocellulose-degrading strain. However, their roles in goat omasum along with lignocellulolytic genetic repertoire are not yet explored. In this study, five different pectin-degrading bacteria were isolated from a healthy goat omasum. Among them, a new Klebsiella variicola strain HSTU-AAM51 was identified to degrade lignocellulose. The genome of the HSTU-AAM51 strain comprised 5,564,045 bp with a GC content of 57.2% and 5312 coding sequences. The comparison of housekeeping genes (16S rRNA, TonB, gyrase B, RecA) and whole-genome sequence (ANI, pangenome, synteny, DNA-DNA hybridization) revealed that the strain HSTU-AAM51 was clustered with Klebsiella variicola strains, but the HSTU-AAM51 strain was markedly deviated. It consisted of seventeen cellulases (GH1, GH3, GH4, GH5, GH13), fourteen beta-glucosidase (2GH3, 7GH4, 4GH1), two glucosidase, and one pullulanase genes. The strain secreted cellulase, pectinase, and xylanase, lignin peroxidase approximately 76–78 U/mL and 57–60 U/mL, respectively, when it was cultured on banana pseudostem for 96 h. The catalytically important residues of extracellular cellulase, xylanase, mannanase, pectinase, chitinase, and tannase proteins (validated 3D model) were bound to their specific ligands. Besides, genes involved in the benzoate and phenylacetate catabolic pathways as well as laccase and DiP-type peroxidase were annotated, which indicated the strain lignin-degrading potentiality. This study revealed a new K. variicola bacterium from goat omasum which harbored lignin and cellulolytic enzymes that could be utilized for the production of bioethanol from lignocelluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source in a shaking incubator at 37° with 140 rpm

Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N (2020) Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability 12:7282. https://doi.org/10.3390/su12187282

    Article  CAS  Google Scholar 

  2. Haque MA, Ashik MA, Akter MS, Halilu A, Haque MA, Islam MR, Abdullah-Al-Mamun M, Nahar MNN, Das SR, Das KC, Ahmed I, Manir MS, Islam MK, Shahadat MRB (2020) Rapid deconstruction of cotton, coir, areca, and banana fibers recalcitrant structure using a bacterial consortium with enhanced saccharifcation. Waste Biomass Valorization. https://doi.org/10.1007/s12649-020-01294-w

    Article  Google Scholar 

  3. Kumar R, Kumar P (2017) Future microbial applications for bioenergy production: a perspective. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00450

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silva JP, Ticona ARP, Hamann PRV, Quirino BF, Noronha EF (2021) Deconstruction of lignin: from enzymes to microorganisms. Molecules 26:2299. https://doi.org/10.3390/molecules26082299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su Y, Yu X, Sun Y, Wang G, Chen H, Chen G (2018) Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover. Sci Rep 8:5385. https://doi.org/10.1038/s41598-018-23626-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dantur KI, Enrique R, Welin B, Castagnaro AP (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5:15. https://doi.org/10.1186/s13568-015-0101-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203. https://doi.org/10.1016/j.rser.2014.01.077

    Article  CAS  Google Scholar 

  8. Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227. https://doi.org/10.1016/j.biotechadv.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  9. Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechnol 31:1167–1175. https://doi.org/10.1007/s11274-015-1878-2

    Article  CAS  PubMed  Google Scholar 

  10. de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  11. Kamsani N, Salleh MM, Yahya A, Chong CS (2016) Production of lignocellulolytic enzymes by microorganisms isolated from Bulbitermes sp. termite gut in solid-state fermentation. Waste Biomass Valorization 7:357–371. https://doi.org/10.1007/s12649-015-9453-5

    Article  CAS  Google Scholar 

  12. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valori 10:235–251

    Article  CAS  Google Scholar 

  13. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Illias RM, Chan KG (2013) Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 97:1475–1488. https://doi.org/10.1007/s00253-012-4663-2

    Article  CAS  PubMed  Google Scholar 

  14. Potprommanee L, Wang XQ, Han YJ, Nyobe D, Peng YP, Huang Q, Liu JY, Liao YL, Chang KL (2017) Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One 12:e0175004. https://doi.org/10.1371/journal.pone.0175004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seta K, Suzuki T, Kiyoshi K, Shigeno T, Kambe TN (2018) Potential use of methane fermentation digested slurry as a low-cost, environmentally-friendly nutrient for bioethanol production from crude glycerol by Klebsiella variicola TB-83D. New Biotechnol 44:1–5. https://doi.org/10.1016/j.nbt.2018.02.014

    Article  CAS  Google Scholar 

  16. Woo HL, Hazen TC, Simmons BA, DeAngelis KM (2014) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol 37:60–67. https://doi.org/10.1016/j.syapm.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  17. Jiménez DJ, Dini-Andreote F, van Elsas JD (2014) Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels 7:92. https://doi.org/10.1186/1754-6834-7-92

    Article  PubMed  PubMed Central  Google Scholar 

  18. Islam MA, Karim A, Woon CW, Ethiraj B, Cheng CK, Yousuf A, Khan MMR (2017) Augmentation of air cathode microbial fuel cell performance using wild type Klebsiella variicola. RSC Adv 7:4798. https://doi.org/10.1039/C6RA24835G

    Article  CAS  Google Scholar 

  19. Zadoks RN, Griffiths HM, Munoz MA, Ahlstrom C, Bennett GJ, Thomas E, Schukken YH (2011) Sources of Klebsiella and Raoultella species on dairy farms: be careful where you walk. J Dairy Sci 94:1045–1051. https://doi.org/10.3168/jds.2010-3603

    Article  CAS  PubMed  Google Scholar 

  20. Haque MA, Cho KM, Barman DN, Kim MK, Yun HD (2015) A potential cellulose microfibril swelling enzyme isolated from Bacillus sp. AY8 enhances cellulose hydrolysis. Process Biochem 50:807–815. https://doi.org/10.1016/j.procbio.2015.02.003

    Article  CAS  Google Scholar 

  21. Haque MA, Lee JH, Cho KM (2015) Endophytic bacterial diversity in Korean kimchi made of Chinese cabbage leaves and their antimicrobial activity against pathogens. Food Control 56:24–33. https://doi.org/10.1016/j.foodcont.2015.03.006

    Article  CAS  Google Scholar 

  22. Kelley DR, Schatz MC, Salzberg SL (2010) Quake: quality-aware detection and correction of sequencing errors. Genome Biol 11(11):R116

    Article  CAS  Google Scholar 

  23. Rahman A, Nahar N, Nawani NN, Jass J, Ghosh S, Olsson B, Mandal A (2015) Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Genomics 106:384–392

    Article  CAS  Google Scholar 

  24. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272

    Article  CAS  Google Scholar 

  25. Kumar M, Verma S, Gazara RK, Kumar M, Pandey A, Verma PK, Thakur IS (2018) Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB Biotechnol Biofuels 11:154. https://doi.org/10.1186/s13068-018-1148-2

    Article  CAS  PubMed  Google Scholar 

  26. Guo DJ, Singh RK, Singh P, Li DP, Sharma A, Xing YX, Song XP, Yang LT, Li YR (2020) Complete genome sequences of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front Microbial 11:580081. https://doi.org/10.3389/fmicb.2020.580081

    Article  Google Scholar 

  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  28. Magalães DB, de Carvalho MEA, Bon E, Neto JSA, Kling SH (1996) Colorimetric assay for lignin peroxidase activity determination using methylene blue as substrate. Biotechnol Tech 10:273–276. https://doi.org/10.1007/BF00184028

    Article  Google Scholar 

  29. dos Santos Melo-Nascimento AO, Mota Moitinho SantÁnna B, Goncalves CC, Santos G, Noronha E, Parachin N, de Aberue Roque MR, Bruce T (2020) Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLoS ONE 15:e0243739. https://doi.org/10.1371/journal.pone.0243739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castillo-González AR, Burrola-Barraza ME, Domínguez-Viveros J, Chávez-Martínez A (2014) Rumen microorganisms and fermentation. Arch Med Vet 46:349–361

    Article  Google Scholar 

  31. Chen YC, Liu T, Yu CH, Chiang TY, Hwang CC (2013) Effects of GC bias in next-generation-sequencing data on De Novo genome assembly. PLoS ONE 8(4):e62856. https://doi.org/10.1371/journal.pone.0062856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodríguez-Medina N, Martínez-Romero E, la Cruz MAD, Ares MA, Valdovinos-Torres H, Silva-Sanchez J, Lozano-Aguirre L, Martínez-Barnetche J, Andrade V, Garza-Ramos U (2020) A Klebsiella variicola plasmid confers hypermucoviscosity-like phenotype and alters capsule production and virulence. Front Microbiol. https://doi.org/10.3389/fmicb.2020.579612

    Article  PubMed  PubMed Central  Google Scholar 

  33. Arakawa K, Tomita M (2007) The GC skew index: a measure of genomic compositional asymmetry and the degree of replicational selection. Evol Bioinform Online 3:159–168

    PubMed  PubMed Central  Google Scholar 

  34. Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A et al (2018) Computational pan-genomics: status, promises and challenges. Brief Bioinform 19:118–135. https://doi.org/10.1093/bib/bbw089

    Article  CAS  Google Scholar 

  35. Lam MQ, Oates NC, Thevarajoo S, Tokiman L, Goh KM, McQueen-Mason SJ, Bruce NC, Chong CS (2020) Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 112:952–960. https://doi.org/10.1016/j.ygeno.2019.06.011

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, Zhang Y, Ge X, Lu F (2019) Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem 295:653–661. https://doi.org/10.1016/j.foodchem.2019.05.163

    Article  CAS  PubMed  Google Scholar 

  37. Dar MA, Shaikh AA, Pawar KD, Pandit RS (2018) Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochem 73:142–153. https://doi.org/10.1016/j.procbio.2018.08.001

    Article  CAS  Google Scholar 

  38. Botha J, Mizrachi E, Myburg AA, Cowan DA (2018) Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 22:1–12. https://doi.org/10.1007/s00792-017-0974-7

    Article  CAS  PubMed  Google Scholar 

  39. Pereira ALS, Nascimento DMD, Souza MDSM, Cassales AR, Morais JPS, Paula RCMD, Rosa MDF, Feitosa JPA (2014) Banana (Musa sp. Cv. Pacovan) pseudostem fibers are composed of varying lignocellulosic composition throughout the diameter. BioResources 9: 7749–7763. https://doi.org/10.15376/biores.9.4.7749-7763

  40. Selvam K, Senbagam D, Selvankumar T, Sudhakar C, Kamala-Kannan S, Senthilkumar B, Govarthanan M (2017) Cellulase enzyme: homology modeling, binding site identification and molecular docking. J Mol Struct 1150:61–67. https://doi.org/10.1016/j.molstruc.2017.08.067

    Article  CAS  Google Scholar 

  41. Dadheech T, Jakhesara S, Chauhan PS, Pandit R, Hinsu A, Kunjadiya A, Rank D, Joshi C (2018) Draft genome analysis of lignocellulolytic enzymes producing Aspergillus terreus with structural insight of β-glucosidases through molecular docking approach. Biomac. https://doi.org/10.1016/j.ijbiomac.2018.12.020

    Article  Google Scholar 

  42. Shah MP, Reddy GV, Banerjee R, Babu PR, Kothari IL (2005) Microbial degradation of banana waste under solid state bioprocessing using two lignocellulolytic fungi (Phylosticta spp. MPS-001 and Aspergillus spp. MPS-002). Process Biochem. 40(1):445–451

    Article  CAS  Google Scholar 

  43. Suzuki K, Hori A, Kawamoto K, Thangudu RR, Ishida T, Igarashi K, Samejima M, Yamada C, Arakawa T, Wakagi T, Koseki T, Fushinobu S (2014) Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Proteins 82:2857–2867

    Article  CAS  Google Scholar 

  44. Lee HY, Cho DY, Ahmad I, Patel HM, Kim MJ, Jung JG, Jeong EH, Haque MA, Cho KM (2021) Mining of a novel esterase (est3S) gene from a cow rumen metagenomic library with organosphosphorus insecticides degrading capability: catalytic insights by site directed mutations, docking, and molecular dynamic simulations. Int J Biol Macromol 190:441–455

    Article  CAS  Google Scholar 

  45. Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:3353–3358. https://doi.org/10.1128/AEM.61.9.3353-3358.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis JR, Goodwin L, Teshima H, Detter C, Tapia R, Han C, Huntemann M, Wei CL, Han J, Chen A, Kyrpides N, Mavrommatis K, Szeto E, Markowitz V, Ivanova N, Mikhailova N, Ovchinnikova G, Pagani I, Pati A, Woyke T, Pitluck S, Peters L, Nolan M, Land M, Sello JK (2013) Genome sequence of Streptomyces viridosporus strain T7A ATCC39115, a lignin-degrading actinomycete. Genome Announc 1(4):e00416-e513. https://doi.org/10.1128/genomeA.00416-13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meux E, Prosper P, Masai E, Mulliert G, Dumarçay S, Morel M, Didierjean C, Gelhaye E, Favier F (2012) Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase omega class. FEBS Lett 586:3944–3950. https://doi.org/10.1016/j.febslet.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  48. Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 6:941–962

    Article  Google Scholar 

  49. Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. https://doi.org/10.1016/j.copbio.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  50. Couto SR, Herrera JLT (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569. https://doi.org/10.1016/j.biotechadv.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  51. Galhaup C, Wagner H, Hinterstoisser B, Haltrich D (2002) Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb Technol 30:529–536. https://doi.org/10.1016/S0141-0229(01)00522-1

    Article  CAS  Google Scholar 

  52. Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI (2002) Production of lignin modifying enzymes by cocultivated white-rot fungi Cerena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme Microb Technol 30:573–580. https://doi.org/10.1016/S0141-0229(02)00021-2

    Article  CAS  Google Scholar 

  53. Andlar M, Rezi T, Marđetko N, Kracher D, Ludwig R, Santek B (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18:768–778. https://doi.org/10.1002/elsc.201800039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perez-Pantoja D, la Iglesia RD, H. Pieper D, Gonzalez B, (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cuprividus necator JMP1134. FEMS Microbiol Rev 32:736–794. https://doi.org/10.1111/j.1574-6976.2008.00122.x

    Article  CAS  PubMed  Google Scholar 

  55. Harwood CS, Parales RE (1996) The beta-keto adipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. https://doi.org/10.1146/annurev.micro.50.1.553

    Article  CAS  PubMed  Google Scholar 

  56. MacLean AM, MacPherson G, Aneja P, M. Finan TM, (2006) Characterization of the β-Ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microbiol 72:5403–5413. https://doi.org/10.1128/AEM.00580-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luengo JM, García JL, Olivera ER (2001) The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39:1434–1442. https://doi.org/10.1046/j.1365-2958.2001.02344.x

    Article  CAS  PubMed  Google Scholar 

  58. Ferrandez A, Minambres B, Garcia B, Olivera ER, Luengo JM, Garcia JL, Diaz E (1998) Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273:25974–25986. https://doi.org/10.1074/jbc.273.40.25974

    Article  CAS  PubMed  Google Scholar 

  59. Ferrandez A, Prieto MA, Garcia GL, Diaz E (1997) Molecular characterization of PadA, a phenylcetaldehyde dehydrogenase from Escherichia coli. FEBS Lett 406:23–27. https://doi.org/10.1016/s0014-5793(97)00228-7

    Article  CAS  PubMed  Google Scholar 

  60. Manso I, Torres B, Andreu JM, Menéndez M, Rivas G, Alfonso C, Díaz E, García JL, Galán, B. (2009). 3-Hydroxyphenylpropionate and phenylpropionate are synergistic activators of the MhpR transcriptional regulator from Escherichia coli. J Biol Chem 284(32), 21218–21228. 10. 1074/jbc.M109.008243

  61. Kracher D, Ludwig R (2016) cellobiose dehydrogenase: an essential enzyme for lignocellulose degradation in nature-a review. J Land Manag Food Enviro 67:145–163. https://doi.org/10.1515/boku-2016-0013

    Article  Google Scholar 

  62. Rahmanpour R, Rea D, Jamshidi S, Fülöp V, Bugg TD (2016) Structure of Thermobifda fusca DyP-type peroxidase and activity towards kraft lignin and lignin model compounds. Arch Biochem Biophys 594:54–60. https://doi.org/10.1016/j.abb.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  63. Singh R, Grigg JC, Qin W, Kadla JF, Murphy ME, Eltis LD (2013) Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chem Biol 8:700–706. https://doi.org/10.1021/cb300608x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J, Liu B, Xu T, Tong C, Liu X (2016) Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 9(1):25. https://doi.org/10.1186/s13068-016-0439-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garrido-Pertierra A, Cooper RA (1981) Identifcation and purification of distinct isomerase and decarboxylase enzymes involved in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli. FEBS J117:581–584. https://doi.org/10.1111/j.1432-1033.1981.tb06377.x

    Article  Google Scholar 

  66. Rather LJ, Knapp B, Haehnel W, Fuchs G (2010) Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J Biol Chem 285:20615–20624. https://doi.org/10.1074/jbc.M110.124156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci 107(32):14390. https://doi.org/10.1073/pnas.1005399107

    Article  PubMed  PubMed Central  Google Scholar 

  68. Constam D, Muheim A, Zimmermann W, Fiechter A (1991) Purifcation and partial characterization of an intracellular NADH: quinone oxidoreductase from Phanerochaete chrysosporium. Microbiology 137:2209–2214. https://doi.org/10.1099/00221287-137-9-2209

    Article  CAS  Google Scholar 

  69. Lee S, Moon D, Choi HT, Song H (2007) Purifcation and characterization of an intracellular NADH: quinone reductase from Trametes versicolor. J Microbiol 45(4):333

    CAS  PubMed  Google Scholar 

  70. Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM, Oh TK, Kim JF (2014) Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS ONE 9:e106704. https://doi.org/10.1371/journal.pone.0106704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulfur oxidizing bacteria and pulse nutrition, a review world. J Agric Sci 5:270–278

    CAS  Google Scholar 

  72. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471. https://doi.org/10.1111/j.1574-6976.2006.00018.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Md. Azizul Haque would like to express gratitude to the TWAS staff for their cordial and sincere cooperation. The authors are also grateful to Invent Technologies, Banani, Dhaka, Bangladesh, for their support of next-generation sequencing.

Funding

The research was supported by The World Academy of Sciences (TWAS), Trieste, Italy (Research Grants: 17–475 RG/BIO/AS_I, January, 2018-June, 2020).

Author information

Authors and Affiliations

Authors

Contributions

Md. Abdullah-Al-Mamun & Md. Shohorab Hossain: experiment, genome analysis, partial writing.

Gautam Chandra Debnath, Md. Ashikujjaman Ashik, Zoherul Hasan: bioinformatics, analysis and data curation.

Sharmin Sultana, Snygdha Rani Das, Shefali Aktar: strain isolation, biochemical analysis.

Aminur Rahman: bioinformatics, data analysis, critical reviewing and editing.

Md. Yeasin Prodhan, Kye Man Cho: resources and proof reading.

Md. Azizul Haque: fund acquisition, conceptualization, genome sequencing, experiments, analysis, manuscript writing, edition, supervision.

Corresponding author

Correspondence to Md. Azizul Haque.

Ethics declarations

Ethical approval

This research does not contain any human or animal experiments. Therefore, ethical approval was not required.

Consent to publication

The authors agreed to submit the manuscript.

Conflict of interest

The manuscript is not under consideration by another journal as the same time as “Brazilian Journal of Microbiology” Journal. All authors have approved the manuscript for the submission to “Brazilian Journal of Microbiology” Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Solange I. Mussatto

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5535 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Md. Abdullah-Al-Mamun, Hossain, M., Debnath, G.C. et al. Unveiling lignocellulolytic trait of a goat omasum inhabitant Klebsiella variicola strain HSTU-AAM51 in light of biochemical and genome analyses. Braz J Microbiol 53, 99–130 (2022). https://doi.org/10.1007/s42770-021-00660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00660-7

Keywords

Navigation