Skip to main content
Log in

Recent discoveries and applications of Anoxybacillus

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atanassova M, Derekova A, Mandeva R, Sjøholm C, Kambourova M (2008) Anoxybacillus bogrovensis sp. nov., a novel thermophilic bacterium isolated from a hot spring in Dolni Bogrov, Bulgaria. Int J Syst Evol Microbiol 58:2359–2362

    Article  CAS  Google Scholar 

  • Ay F, Karaoglu H, İnan K, Çanakçi S, Beldüz AO (2011) Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1. Protein Expr Purif 80:74–79

    Article  CAS  Google Scholar 

  • Beldüz AO, Dülger S, Demirbaǧ Z (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320

    Article  Google Scholar 

  • Beriş FŞ, De Smet L, Karaoglu H, Çanakçi S, Van Beeumen J, Beldüz AO (2011) The ATPase activity of the G2alt gene encoding an aluminium tolerance protein from Anoxybacillus gonensis G2. J Microbiol 49:641–650

    Article  Google Scholar 

  • Bolton DJ, Kelly CT, Fogarty WM (1997) Purification and characterization of the α-amylase of Bacillus flavothermus. Enzyme Microb Technol 20:340–343

    Article  CAS  Google Scholar 

  • Burgess SA, Brooks JD, Rakonjac J, Walker KM, Flint SH (2009) The formation of spores in biofilms of Anoxybacillus flavithermus. J Appl Microbiol 107:1012–1018

    Article  CAS  Google Scholar 

  • Burgess SA, Lindsay D, Flint SH (2010) Thermophilic bacilli and their importance in dairy processing. Int J Food Microbiol 144:215–225

    Article  CAS  Google Scholar 

  • Burnett P-GG, Daughney CJ, Peak D (2006) Cd adsorption onto Anoxybacillus flavithermus: surface complexation modeling and spectroscopic investigations. Geochim Cosmochim Acta 70:5253–5269

    Article  CAS  Google Scholar 

  • Byers HK, Stackebrandt E, Hayward C, Blackall LL (1998) Molecular investigation of a microbial mat associated with the Great Artesian Basin. FEMS Microbiol Ecol 25:391–403

    Article  CAS  Google Scholar 

  • Çanakçi S, Kacagan M, İnan K, Beldüz AO, Saha BC (2008) Cloning, purification, and characterization of a thermostable α-l-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari. Appl Microbiol Biotechnol 81:61–68

  • Chai YY, Kahar UM, Salleh MM, Illias RM, Goh KM (2012a) Isolation and characterization of pullulan-degrading Anoxybacillus species isolated from Malaysian hot springs. Environ Technol 33:1231–1238

    Article  CAS  Google Scholar 

  • Chai YY, Rahman RNZRA, Illias RM, Goh KM (2012b) Cloning and characterisation of two new thermostable and alkali-tolerant α-amylases from the Anoxybacillus species that produce high levels of maltose. J Ind Microbiol Biotechnol 39:731–741

    Article  CAS  Google Scholar 

  • Chatziefthimiou AD, Crespo-Medina M, Wang Y, Vetriani C, Barkay T (2007) The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles 11:469–479

    Article  CAS  Google Scholar 

  • Chen X-G, Stabnikova O, Tay J-H, Wang J-Y, Tay ST-L (2004) Thermoactive extracellular proteases of Geobacillus caldoproteolyticus sp. nov., from sewage sludge. Extremophiles 8:489–498

    Article  CAS  Google Scholar 

  • Cihan AC, Ozcan B, Çökmüş C (2011) Anoxybacillus salavatliensis sp. nov., an α-glucosidase producing, thermophilic bacterium isolated from Salavatli, Turkey. J Basic Microbiol 51:136–146

    Article  CAS  Google Scholar 

  • Çolak A, Şişik D, Saglam N, Güner S, Çanakçi S, Beldüz AO (2005) Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2. Bioresour Technol 96:625–631

    Article  Google Scholar 

  • Colak DN, İnan K, Karaoglu H, Çanakçi S, Beldüz AO (2012) Molecular analysis of the genus Anoxybacillus based on sequence similarity of the genes recN, flaA, and ftsY. Folia Microbiol 57:61–69

    Article  CAS  Google Scholar 

  • Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2011) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly “thermoglucosidasius”); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485

    Article  Google Scholar 

  • Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin J-G (2012) Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics. http://www.biomedcentral.com/1471-2164/13/57

  • D’Souza DR, Morgan RD, Parashar V, Capalash N, Sharma P (2004) Characterization of BflI—a thermostable, Co++-requiring isoschizomer of BsiYI from Anoxybacillus flavithermus. World J Microbiol Biotechnol 20:593–598

    Article  Google Scholar 

  • Dai J, Liu Y, Lei Y, Gao Y, Han F, Xiao Y, Peng H (2011) A new subspecies of Anoxybacillus flavithermus ssp. yunnanensis ssp. nov. with very high ethanol tolerance. FEMS Microbiol Lett 320:72–78

    Article  CAS  Google Scholar 

  • De Boer AS, Priest F, Diderichsen B (1994) On the industrial use of Bacillus licheniformis: a review. Appl Microbiol Biotechnol 40:595–598

    Article  Google Scholar 

  • De Clerck E, Rodríguez-Díaz M, Vanhoutte T, Heyrman J, Logan NA, De Vos P (2004) Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int J Syst Evol Microbiol 54:941–946

    Article  Google Scholar 

  • Deive FJ, Domínguez A, Barrio T, Moscoso F, Morán P, Longo MA, Sanromán MA (2010) Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). J Hazard Mater 182:735–742

    Article  CAS  Google Scholar 

  • Derekova A, Sjøholm C, Mandeva R, Kambourova M (2007) Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). Extremophiles 11:577–583

    Article  Google Scholar 

  • Derekova A, Mandeva R, Kambourova M (2008) Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World J Microbiol Biotechnol 24:1697–1702

    Article  CAS  Google Scholar 

  • Dülger S, Demirbaǧ Z, Beldüz AO (2004) Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. Int J Syst Evol Microbiol 54:1499–1503

    Article  Google Scholar 

  • Duran C, Bulut VN, Gündoǧdu A, Soylak M, Beldüz AO, Beriş FŞ (2009) Biosorption of heavy metals by Anoxybacillus gonensis immobilized on diaion HP-2MG. Sep Sci Technol 44:335–358

    Article  CAS  Google Scholar 

  • Ertunga NS, Çolak A, Beldüz AO, Çanakçi S, Karaoglu H, Sandalli C (2007) Cloning, expression, purification and characterization of fructose-1,6-bisphosphate aldolase from Anoxybacillus gonensis G2. J Biochem 141:817–825

    Article  CAS  Google Scholar 

  • Faiz Ö, Çolak A, Saglam N, Çanakçi S, Beldüz AO (2007) Determination and characterization of thermostable esterolytic activity from a novel thermophilic bacterium Anoxybacillus gonensis A4. J Biochem Mol Biol 40:588–594

    Article  CAS  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607

    Article  CAS  Google Scholar 

  • Ghaffari S, Sepahi AA, Razavi MR, Malekzadeh F, Haydarian H (2011) Effectiveness of inoculation with isolated Anoxybacillus sp. MGA110 on municipal solid waste composting process. Afr J Microbiol Res 5:5373–5378

    CAS  Google Scholar 

  • Gul-Guven R, Güven K, Poli A, Nicolaus B (2008) Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman. J Gen Appl Microbiol 54:327–334

    Article  CAS  Google Scholar 

  • Gursahani YH, Gupta SG (2011) Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Pet Environ Biotechnol 2:1–4

    Google Scholar 

  • Hasyim R, Imai T, O-Thong S, Sulistyowati L (2011) Biohydrogen production from sago starch in wastewater using an enriched thermophilic mixed culture from hot spring. Int J Hydrog Energy 36:14162–14171

    Article  CAS  Google Scholar 

  • Heinen W, Lauwers AM, Mulders JWM (1982) Bacillus flavothermus, a newly isolated facultative thermophile. Anton Leeuw 48:265–272

    Article  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  Google Scholar 

  • Hosoya R, Hamana K, Niitsu M, Itoh T (2004) Polyamine analysis for chemotaxonomy of thermophilic eubacteria: polyamine distribution profiles within the orders Aquificales, Thermotogales, Thermodesulfobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. J Gen Appl Microbiol 50:271–287

    Article  CAS  Google Scholar 

  • Ibrahim ASS, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1:473–478

    CAS  Google Scholar 

  • İnan K, Bektaš Y, Çanakçi S, Beldüz AO (2011a) Use of rpoB sequences and rep-PCR for phylogenetic study of Anoxybacillus species. J Microbiol 49:782–790

    Article  Google Scholar 

  • İnan K, Çanakçi S, Beldüz AO (2011b) Isolation and characterization of xylanolytic new strains of Anoxybacillus from some hot springs in Turkey. Turk J Biol 35:529–542

    Google Scholar 

  • İnan K, Beldüz AO, Çanakçi S (2012) Anoxybacillus kaynarcensis sp. nov., a moderately thermophilic, xylanase producing bacterium. J Basic Microbiol. doi:10.1002/jobm.201100638

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    Article  CAS  Google Scholar 

  • Kacagan M, Çanakçi S, Sandalli C, İnan K, Colak DN, Beldüz AO (2008) Characterization of a xylanase from a thermophilic strain of Anoxybacillus pushchinoensis A8. Biologia 63:599–606

    Article  CAS  Google Scholar 

  • Kambourova M, Mandeva R, Fiume I, Maurelli L, Rossi M, Morana A (2007) Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the β-xylosidase/α-arabinosidase from Sulfolobus solfataricus Oα. J Appl Microbiol 102:1586–1593

    Article  CAS  Google Scholar 

  • Kevbrin VV, Zengler K, Lysenko AM, Wiegel J (2005) Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. Extremophiles 9:391–398

    Article  CAS  Google Scholar 

  • Kikani BA, Singh SP (2012) The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Process Biochem. doi:10.1016/j.procbio.2012.06.005

  • Kolstø A-B, Tourasse NJ, Økstad OA (2009) What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 63:451–476

    Article  Google Scholar 

  • Kritee K, Blum JD, Barkay T (2008) Mercury stable isotope fractionation during reduction of Hg(II) by different microbial pathways. Environ Sci Technol 42:9171–9177

    Article  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi S-K, Codani J-J, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Düsterhöft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim S-Y, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Hénaut A, Hilbert H, Holsappel S, Hosono S, Hullo M-F, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee S-M, Levine A, Liu H, Masuda S, Levine A, Liu H, Masuda S, Mauël C, Médigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O’Reilly M, Ogawa K, Ogiwara A, Oudega B, Park S-H, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin B-S, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa H-F, Zumstein E, Yoshikawa H, Danchin A, Bertero MG, Bessières P, Bolotin A, Borchert S, Borriss R, Boursier L (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  Google Scholar 

  • Lauwers AM, Heinen W (1983) Thermal properties of enzymes from Bacillus flavothermus, grown between 34 and 70 °C. Anton Leeuw 49:191–201

    Article  CAS  Google Scholar 

  • Lavrenteva EV, Shagzhina AP, Babasanova OB, Dunaevsky YE, Namsaraev ZB, Barkhutova DD (2009) The study of two alkaliphilic thermophile bacteria of the Anoxybacillus genus as producers of extracellular proteinase. Appl Biochem Microbiol 45:484–488

    Article  CAS  Google Scholar 

  • Li Y, Zhu Y, Liu A, Sun Y (2011) Identification and characterization of a novel l-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production. Extremophiles 15:441–450

    Google Scholar 

  • Liang Y, Feng Z, Yesuf J, Blackburn JW (2010) Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Appl Biochem Biotechnol 160:1841–1852

    Article  CAS  Google Scholar 

  • Liu J, Lei Y, Wang F, Yi Y, Liu Y, Wang G (2011) Immunostimulatory activities of specific bacterial secondary metabolite of Anoxybacillus flavithermus strain SX-4 on carp, Cyprinus carpio. J Appl Microbiol 110:1056–1064

    Article  CAS  Google Scholar 

  • Miñana-Galbis D, Pinzón DL, Lorén JG, Manresa À, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60:1600–1604

    Article  Google Scholar 

  • Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15:73–81

    Article  CAS  Google Scholar 

  • Namsaraev ZB, Babasanova OB, Dunaevsky YE, Akimov VN, Barkhutova DD, Gorlenko VM, Namsaraev BB (2010) Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, Central Mongolia. Microbiology 79:491–499

    Article  CAS  Google Scholar 

  • Narayan VV, Hatha MA, Morgan HW, Rao D (2008) Isolation and characterization of aerobic thermophilic bacteria from the Savusavu hot springs in Fiji. Microbes Environ 23:350–352

    Article  Google Scholar 

  • Nilsson C, Nilsson F, Turner P, Sixtensson M, Karlsson EN, Holst O, Cohen A, Gorton L (2006) Characterisation of two novel cyclodextrinases using on-line microdialysis sampling with high-performance anion exchange chromatography. Anal Bioanal Chem 385:1421–1429

    Article  CAS  Google Scholar 

  • Nold SC, Kopczynski ED, Ward DM (1996) Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat. Appl Environ Microbiol 62:3917–3921

    CAS  Google Scholar 

  • Ong RM, Goh KM, Mahadi NM, Hassan O, Rahman RNZRA, Illias RM (2008) Cloning, extracellular expression and characterization of a predominant β-CGTase from Bacillus sp. G1 in E. coli. J Ind Microbiol Biotechnol 35:1705–1714

    Article  CAS  Google Scholar 

  • O-Thong S, Hniman A, Prasertsan P, Imai T (2011) Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int J Hydrog Energy 36:3409–3416

    Article  CAS  Google Scholar 

  • Özdemir S, Matpan F, Okumuş V, Dündar A, Ulutas MS, Kumru M (2011) Isolation of a thermophilic Anoxybacillus flavithermus sp. nov. and production of thermostable α-amylase under solid-state fermentation (SSF). Ann Microbiol. doi:10.1007/s13213-011-0385-4

  • Palmer JS, Flint SH, Schmid J, Brooks JD (2010) The role of surface charge and hydrophobicity in the attachment of Anoxybacillus flavithermus isolated from milk powder. J Ind Microbiol Biotechnol 37:1111–1119

    Article  CAS  Google Scholar 

  • Paul SC, Jain P, Mitra J, Dutta S, Bhattacharya P, Bal B, Bhattacharyya D, Gupta SD, Pal S (2012) Induction of Cr(VI) reduction activity in an Anoxybacillus strain under heat stress: a biochemical and proteomic study. FEMS Microbiol Lett 331:70–80

    Article  CAS  Google Scholar 

  • Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117

    Article  CAS  Google Scholar 

  • Pikuta E, Cleland D, Tang J (2003) Aerobic growth of Anoxybacillus pushchinoensis K1T: emended descriptions of A. pushchinoensis and the genus Anoxybacillus. Int J Syst Evol Microbiol 53:1561–1562

    Article  CAS  Google Scholar 

  • Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K, Cleland D, Tang J (2009) Genus IV. Anoxybacillus. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Williams & Wilkins, New York, pp 134–141

    Google Scholar 

  • Poli A, Esposito E, Lama L, Orlando P, Nicolaus G, De Appolonia F, Gambacorta A, Nicolaus B (2006) Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst Appl Microbiol 29:300–307

    Article  CAS  Google Scholar 

  • Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Berrini CC (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13:867–874

    Article  Google Scholar 

  • Reginensi SM, González MJ, Olivera JA, Sosa M, Juliano P, Bermúdez J (2011) RAPD-based screening for spore-forming bacterial populations in Uruguayan commercial powdered milk. Int J Food Microbiol 148:36–41

    Article  Google Scholar 

  • Řezanka T, Kambourova M, Derekova A, Kolouchová I, Sigler K (2012) LC–ESI–MS/MS identification of polar lipids of two thermophilic Anoxybacillus bacteria containing a unique lipid pattern. Lipids 47:729–739

    Article  Google Scholar 

  • Ronimus RS, Parker LE, Turner N, Poudel S, Rückert A, Morgan HW (2003) A RAPD-based comparison of thermophilic bacilli from milk powder. Int J Food Microbiol 85:45–61

    Article  CAS  Google Scholar 

  • Rückert A, Ronimus RS, Morgan HW (2004) A RAPD-based survey of thermophilic bacilli in milk powders from different countries. Int J Food Microbiol 96:263–272

    Article  Google Scholar 

  • Rueckert A, Ronimus RS, Morgan HW (2005a) Development of a rapid detection and enumeration method for thermophilic bacilli in milk powders. J Microbiol Methods 60:155–167

    Article  CAS  Google Scholar 

  • Rueckert A, Ronimus RS, Morgan HW (2005b) Rapid differentiation and enumeration of the total, viable vegetative cell and spore content of thermophilic bacilli in milk powders with reference to Anoxybacillus flavithermus. J Appl Microbiol 99:1246–1255

    Article  CAS  Google Scholar 

  • Rueckert A, Ronimus RS, Morgan HW (2006) Development of a real-time PCR assay targeting the sporulation gene, spo0A, for the enumeration of thermophilic bacilli in milk powder. Food Microbiol 23:220–230

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Saw JH, Mountain BW, Feng L, Omelchenko MV, Hou S, Saito JA, Stott MB, Li D, Zhao G, Wu J, Galperin MY, Koonin EV, Makarova KS, Wolf YI, Rigden DJ, Dunfield PF, Wang L, Alam M (2008) Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biol 9:1–16

    Article  Google Scholar 

  • Schäffer C, Franck WL, Scheberl A, Kosma P, McDermott TR, Messner P (2004) Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol 54:2361–2368

    Article  Google Scholar 

  • Shaojing S, Fuping L, Nan J, Li L, Jianyong X, Muchen C, Hui S (2011) Study of a novel thermostable pullulanase producing strain Anoxybacillus sp. LM14-2. Biotechnol Bull 9:136–141

    Google Scholar 

  • Somerton B, Palmer J, Brooks J, Smolinski E, Lindsay D, Flint S (2012) Influence of cations on growth of thermophilic Geobacillus spp. and Anoxybacillus flavithermus in planktonic culture. Appl Environ Microbiol 78:2477–2481

    Article  CAS  Google Scholar 

  • Sunna A, Prowe SG, Stoffregen T, Antranikian G (1997) Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol Lett 148:209–216

    Article  CAS  Google Scholar 

  • Takami H, Takaki Y, Chee G-J, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tawil G, Viksø-Nielsen A, Rolland-Sabaté A, Colonna P, Buléon A (2012) Hydrolysis of concentrated raw starch: a new very efficient α-amylase from Anoxybacillus flavothermus. Carbohydr Polym 87:46–52

    Article  CAS  Google Scholar 

  • Thitikorn-Amorn J, Kyu KL, Sakka K, Ratanakhanokchai K (2012) Production and accumulation of 4-O-methyl-α-d-glucuronosyl-xylotriose by growing culture of thermophilic Anoxybacillus sp. strain JT-12. Appl Biochem Biotechnol 166:1791–1800

    Article  CAS  Google Scholar 

  • Turner P, Holst O, Karlsson EN (2005a) Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expr Purif 39:54–60

    Article  CAS  Google Scholar 

  • Turner P, Labes A, Fridjónsson ÓH, Hreggvidson GO, Schönheit P, Kristjánsson JK, Holst O, Karlsson EN (2005b) Two novel cyclodextrin-degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile. J Biosci Bioeng 100:380–390

    Article  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact. doi:10.1186/1475-2859-6-9

  • Viksø-Nielsen A, Andersen C, Hoff T, Pedersen S (2006) Development of new α-amylases for raw starch hydrolysis. Biocatal Biotransform 24:121–127

    Article  Google Scholar 

  • Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009) Bergey’s manual of systematic bacteriology. Williams & Wilkins, New York

    Google Scholar 

  • Wang G-X, Liu Y-T, Li F-Y, Gao H-T, Lei Y, Liu X-L (2010a) Immunostimulatory activities of Bacillus simplex DR-834 to carp (Cyprinus carpio). Fish Shellfish Immunol 29:378–387

    Article  CAS  Google Scholar 

  • Wang J, Bai Y, Yang P, Shi P, Luo H, Meng K, Huang H, Yin J, Yao B (2010b) A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J Microbiol Biotechnol 26:917–924

    Article  CAS  Google Scholar 

  • Wang G-X, Wang Y, Wu Z-F, Jiang H-F, Dong R-Q, Li F-Y, Liu X-L (2011) Immunomodulatory effects of secondary metabolites from thermophilic Anoxybacillus kamchatkensis XA-1 on carp, Cyprinus carpio. Fish Shellfish Immunol 30:1331–1338

    Article  Google Scholar 

  • Wang C, Kong X, Zhang X-Y (2012) Mesophilic and thermophilic biofiltration of gaseous toluene in a long-term operation: performance evaluation, biomass accumulation, mass balance analysis and isolation identification. J Hazard Mater 229–230:94–99

    Article  Google Scholar 

  • Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE. doi:10.1371/journal.pone.0030440

  • Yildirim M, Col M, Çolak A, Güner S, Dülger S, Beldüz AO (2005) Diphenolases from Anoxybacillus kestanbolensis strains K1 and K4. World J Microbiol Biotechnol 21:501–507

    Article  CAS  Google Scholar 

  • Yuan D-D, Liu G-C, Ren D-Y, Zhang D, Zhao L, Kan C-P, Yang Y-Z, Ma W, Li Y, Zhang L-B (2012) A survey on occurrence of thermophilic bacilli in commercial milk powders in China. Food Control 25:752–757

    Article  Google Scholar 

  • Yumoto I, Hirota K, Kawahara T, Nodasaka Y, Okuyama H, Matsuyama H, Yokota Y, Nakajima K, Hoshino T (2004) Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in Kamchatka. Int J Syst Evol Microbiol 54:1239–1242

    Article  CAS  Google Scholar 

  • Zhang C-M, Huang X-W, Pan W-Z, Zhang J, Wei K-B, Klenk H-P, Tang S-K, Li W-J, Zhang K-Q (2011) Anoxybacillus tengchongensis sp. nov. and Anoxybacillus eryuanensis sp. nov., facultatively anaerobic, alkalitolerant bacteria from hot springs. Int J Syst Evol Microbiol 61:118–122

    Article  CAS  Google Scholar 

  • Zitomer DH, Durán M, Albert R, Güven E (2007) Thermophilic aerobic granular biomass for enhanced settleability. Water Res 41:819–825

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work are financially supported by Universiti Teknologi Malaysia GUP grant and University of Malaya High Impact Research Grant (HIR Grant, A000001–50001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kian Mau Goh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, K.M., Kahar, U.M., Chai, Y.Y. et al. Recent discoveries and applications of Anoxybacillus . Appl Microbiol Biotechnol 97, 1475–1488 (2013). https://doi.org/10.1007/s00253-012-4663-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4663-2

Keywords

Navigation