Skip to main content
Log in

A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mannan is an important polysaccharide found in softwoods and many other plant sources. Mannans from various sources display large differences in composition, structure and complexity. To hydrolyse mannan into its monomer sugars requires a number of enzymes working in synergy. This review examines mannan structure and the enzymes required for its hydrolysis. Several studies have investigated the effect of supplementing β-mannanases with β-mannosidases and α-galactosidases in binary and ternary combinations. Synergistic enhancement of hydrolysis has been found in some, but not all cases. In the case of mannosidases, they sometimes display an anti-synergistic effect with mannanases, most likely due to competition for binding sites. Most importantly, in the case of α-galactosidases, the same enzyme from different families display differences in synergistic interactions due to different specificities. An improved understanding of enzyme interactions will aid in achieving enhanced hydrolysis of mannans and higher sugar yields. This review highlights areas which require further research in order to gain a better understanding of mannan hydrolysis and utilisation. Such knowledge is very important as this can be used in the optimisation of commercial or purified enzyme mixtures to improve the economic viability of the conversion of high mannan-containing biomass such as softwoods into fermentable sugars for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ademark P, Larsson M, Tjerneld F, Stålbrand H (2001) Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzym Microb Technol 29:441–448

    Article  CAS  Google Scholar 

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls: from biochemistry to biology. Garland Science, New York

    Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3:82–92

    Article  Google Scholar 

  • Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour Technol 102:5207–5213

    Article  CAS  Google Scholar 

  • Cerveró JM, Skovgaard PA, Felby C, Sørensen HR, Jørensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzym Microb Technol 46:177–184

    Article  Google Scholar 

  • Charrier M, Rouland C (2001) Mannan-degrading enzymes purified from the crop of brown garden snail Helix aspersa Muller (Gastropoda Pulmonata). J Exp Zool 290:125–135

    Article  CAS  Google Scholar 

  • Chauve M, Mathis H, Huc D, Casanave D, Monot F, Ferreira NL (2010) Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels 3(3). doi:10.1186/1754-6834-3-3

  • Clarke JH, Davidson JK, Rixon JE, Halstead JR, Fransen MP, Gilbert HJ, Hazlewood GP (2000) A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Appl Microb Biotechnol 53:661–667

    Article  CAS  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216

    Article  CAS  Google Scholar 

  • Dias FMV, Vincent F, Pell G, Prates JA, Centeno MSJ, Tailford LE, Ferreira LMA, Fontes CMGA, Davies GJ, Gilbert HJ (2004) Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio Mixtus mannosidase 5A. J Biol Chem 279(24):25517–25526

    Article  CAS  Google Scholar 

  • Dotsenko GS, Semenova MV, Sinitsyna OA, Hinz SWA, Wery J, Zorov IN, Kondratieva EG, Sinitsyn AP (2012) Cloning, purification, and characterization of galactomannan-degrading enzymes from Myceliophthora thermophila. Biochem. doi:10.1134/S0006297912110090

    Google Scholar 

  • Ghosh A, Luis AS, Brás JLA, Fontes CMA, Goyal A (2013) Thermostable recombinant β-(1 → 4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production. J Agric Food Chem 61:12333–12344

    Article  CAS  Google Scholar 

  • Gübitz GM, Hayn M, Sommerauer M, Steiner W (1996) Mannan-degrading enzymes from Sclerotium rolfsii: characterisation and synergism of two endo β-mannanases and β-mannosidase. Bioresour Technol 58:127–135

    Article  Google Scholar 

  • Halstead JR, Fransen MP, Eberhart RY, Park AJ, Gilbert HJ, Hazlewood GP (2000) α-Galactosidase A from Pseudomonas fluorescens subsp. cellulosa: cloning, high level expression and its role in galactomannan hydrolysis. FEMS Microbiol Lett 192:197–203

    CAS  Google Scholar 

  • Han Y, Dodd D, Hespen CW, Ohene-Adjei S, Schroeder CM, Mackie RI, Cann IKO (2010) Comparative analyses of two thermophilic enzymes exhibiting both β-1,4 mannosidic and β-1,4 glucosidic cleavage activities from Caldanaerobius polysaccharolyticus. J Bacteriol 192(16):4111–4121

    Article  CAS  Google Scholar 

  • Hägglund P (2002) Mannan-hydrolysis by hemicellulases: enzyme-polysaccharide interaction of a modular β-mannanase. Ph.D. Thesis. Lund University, Sweden

  • Jian H, Zhu L, Zhang W, Sun D, Jiang J (2013) Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinesis galactomannan gum. Int J Biol Macromol 55:282–288

    Article  CAS  Google Scholar 

  • Jindou S, Karita S, Fujino T, Hayashi H, Kimura T, Sakka K, Ohmiya K (2002) α-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J Bacteriol 184:600–604

    Article  CAS  Google Scholar 

  • Kim W, Kobayashi O, Kaneko S, Sakakibara Y, Park G, Kusakabe I, Tanaka H, Kobayashi H (2002) α-Galactosidase from cultured rice (Oryza sativa L. var. Nipponbare) cells. Phytochem 61:621–630

    Article  CAS  Google Scholar 

  • Klyosov AA, Dotsenko GS, Hinz SWA, Sinitsyn AP (2012) Structural features of β-(1 → 4)-D-galactomannans of plant origin as a probe for β-(1 → 4)-mannanase polymeric substrate specificity. Carbohydr Res 352:65–69

    Article  CAS  Google Scholar 

  • Kulminskaya AA, Eneiskaya EV, Isaea-Ivanona LS, Salvel’ev AN, Sidorenko IA, Shabalin KA, Golubev AM, Neustroev KN (1999) Enzymatic activity and β-galactomannan binding property of β-mannosidase from Trichoderm reesei. Enzym Microb Technol 25:372–377

    Article  CAS  Google Scholar 

  • Malgas S, van Dyk JS, Pletschke BI (2015) β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism—a key factor for the hydrolysis of galactomannan substrates. Enzym Microb Technol 70:1–8

    Article  CAS  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Luonteri E, Penttila M (1996) Three α-galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur J Biochem 240:104–111

    Article  CAS  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  Google Scholar 

  • Nascimento AS, Muniz JRC, Aparício R, Gobulev AM, Polikarpov I (2014) Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme. FEBS J 281:4165–4178

    Article  CAS  Google Scholar 

  • Reid JSG, Edwards ME (1995) Galactomannans and other cell wall storage polysaccharides in seeds. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. CRC Press, Boca Raton, pp 155–186

    Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  Google Scholar 

  • Shi P, Yao G, Cao Y, Yang P, Yuan T, Huang H, Bai Y, Yao B (2011) Cloning and characterization of a new β-mannosidase from Streptomyces sp. S27. Enzym Microb Technol 49:277–283

    Article  CAS  Google Scholar 

  • Tailford LE, Money VA, Smith NL, Dumon C, Davies GJ, Gilbert HJ (2007) Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the β-mannosidase, BtMan2A. J Biol Chem 282(15):11291–11299

    Article  CAS  Google Scholar 

  • Tailford LE, Ducros VMA, Flint JE, Roberts SM, Morland C, Zechel DL (2009) Understanding how diverse β-mannanases recognize heterogeneous substrates. Biochem 48:7009–7018

    Article  CAS  Google Scholar 

  • Van Zyl WH, Rose SH, Trollope K, Gorgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45:1203–1213

    Article  Google Scholar 

  • Várnai A, Huikko L, Pere J, Sikka-aho M, Viikari L (2011) Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102(19):9096–9104

    Article  Google Scholar 

  • Wang H, Luo H, Li J, Bai Y, Huang H, Shi P, Fan Y, Yao B (2010) An α-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with β-mannanase. Bioresour Technol 101:8376–8382

    Article  CAS  Google Scholar 

  • Wang H, Ma R, Shi P, Huang H, Yang P, Wang Y, Fan Y, Yao B (2015) Insights into the substrate specificity and synergy with mannanase of family 27 α-galactosidases from Neosartorya fischeri P1. Appl Microb Biotechnol 99:1261–1272

    Article  CAS  Google Scholar 

  • Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans—a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210

    Article  Google Scholar 

  • Xiao Z, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 113–116:1115–1126

  • Yamabhai M, Sak-Ubol S, Sril W, Dietmar H (2014) Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 15:1–11

  • Zahura UA, Mohammad MR, Inoue A, Ojima T (2012) Characterization of a β-mannosidase from a marine gastropod, Aplysia kurodai. Comp Biochem Physiol 162:24–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Research Foundation (NRF) of South Africa and Rhodes University is gratefully acknowledged. Any opinion, findings and conclusions or recommendations expressed in this material are those of the author(s) and therefore the NRF does not accept any liability in regard thereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett I. Pletschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malgas, S., van Dyk, J.S. & Pletschke, B.I. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechnol 31, 1167–1175 (2015). https://doi.org/10.1007/s11274-015-1878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1878-2

Keywords

Navigation