Skip to main content
Log in

Electrospun Textile Strategies in Tendon to Bone Junction Reconstruction

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The repair of tendon to bone junction (TBJ) remains a tremendous challenge in tissue engineering due to the complicated structure, components, mechanical properties, and cell types. In order to reconstruct the tissue and restore its functionality, biomedical scaffolds with hierarchical and gradient structures have been fabricated by various strategies. In recent decades, electrospinning has become one of the most popular methods in fabricating TBJ scaffolds due to easy fabrication, high porosity, and ECM-like nano-scale structure. However, mechanical properties are the pain point of electrospun biomedical scaffolds. Traditional textile technology can be exploited to compensate for this weakness, which will be deeply discussed here. This review will start with a brief introduction to the structure and function of the native TBJ tissue and a short overview of electrospinning technology. Then, different electrospun biomedical scaffolds for TBJ repair will be summarized and compared. Furthermore, some advanced technologies and modification methods in fabricating functionalized electrospun TBJ scaffolds are discussed. In the end, current challenges and solutions are being proposed, which would provide instruction for the research of electrospun textile TBJ scaffolds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from ref [41], Copyright 2021, Baishideng. b Traditional therapeutic strategies for TBJ repair; reproduced with permission from ref [27], Copyright 2020, Elsevier. c The three core factors of TBJ engineering technology are ideal scaffold, growth factor, and cultured cells

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med 2019;16:549.

    Article  CAS  Google Scholar 

  2. Stannard J, Fortington L. Musculoskeletal injury in military special operations forces: a systematic review. BMJ Mil Health 2021;167:255.

    Article  Google Scholar 

  3. Derwin KA, Galatz LM, Ratcliffe A, Thomopoulos S. Enthesis repair: challenges and opportunities for effective tendon-to-bone healing. J Bone Joint Surg Am 2018;100:e109.

    Article  Google Scholar 

  4. McCarron JA, Derwin KA, Bey MJ, Polster JM, Schils JP, Ricchetti ET, Iannotti JP. Failure with continuity in rotator cuff repair “healing.” Am J Sports Med 2013;41:134.

    Article  Google Scholar 

  5. Thomopoulos S. The role of mechanobiology in the attachment of tendon to bone. IBMS BoneKey 2011;8:271.

    Article  Google Scholar 

  6. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008;49:5603.

    Article  CAS  Google Scholar 

  7. Huang Y, Du Z, Li K, Jing W, Wei P, Zhao B, Yu Y, Cai Q, Yang X. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration. Adv Fiber Mater 2022;4:894.

    Article  CAS  Google Scholar 

  8. Xue Y, Kim HJ, Lee J, Liu Y, Hoffman T, Chen Y, Zhou X, Sun W, Zhang S, Cho HJ, Lee J, Kang H, Ryu W, Lee CM, Ahadian S, Dokmeci MR, Lei B, Lee K, Khademhosseini A. Co-electrospun silk fibroin and gelatin methacryloyl sheet seeded with mesenchymal stem cells for tendon regeneration. Small 2022;18:e2107714.

    Article  Google Scholar 

  9. Yu C, Wang T, Diao H, Liu N, Zhang Y, Jiang H, Zhao P, Shan Z, Sun Z, Wu T, Mo X, Yu T. Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon-bone healing. Adv Fiber Mater 2022;2022:5.

    Google Scholar 

  10. Cai J, Wang J, Ye K, Li D, Ai C, Sheng D, Jin W, Liu X, Zhi Y, Jiang J, Chen J, Mo X, Chen S. Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. Int J Nanomed 2018;13:3481.

    Article  CAS  Google Scholar 

  11. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 2009;9:7.

    Article  Google Scholar 

  12. Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater 2022;2022:55.

    Google Scholar 

  13. Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020;8:3574.

    Article  CAS  Google Scholar 

  14. Saveh-Shemshaki N, Nair LS, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomater 2019;94:64.

    Article  CAS  Google Scholar 

  15. Stace ET, Nagra NS, Tiberwel S, Khan W, Carr AJ. The Use of Electrospun Scaffolds in Musculoskeletal Tissue Engineering: A Focus on Tendon and the Rotator Cuff. Curr Stem Cell Res T 2018;13:619.

    Article  CAS  Google Scholar 

  16. Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliver Rev 2015;94:126.

    Article  CAS  Google Scholar 

  17. Lei T, Zhang T, Ju W, Chen X, Heng BC, Shen W, Yin Z. Biomimetic strategies for tendon/ligament-to-bone interface regeneration. Bioact Mater 2021;6:2491.

    Article  CAS  Google Scholar 

  18. Wang D, Zhang X, Huang S, Liu Y, Fu BS, Mak KK, Blocki AM, Yung PS, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative medicine: bone-tendon-muscle units of the rotator cuff. Biomaterials 2021;272:120789.

    Article  CAS  Google Scholar 

  19. Baldino L, Maffulli N, Reverchon E. Regenerative enginnering of musculoskeletal tissue and interfaces. London: Woodhead Publishing; 2015. p. 345–61.

    Book  Google Scholar 

  20. Baldino L, Cardea S, Maffulli N, Reverchon E. Regeneration techniques for bone-to-tendon and muscle-to-tendon interfaces reconstruction. Brit Med Bull 2016;117:25.

    Article  Google Scholar 

  21. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliver Rev 2007;59:1413.

    Article  CAS  Google Scholar 

  22. Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, Chen J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 2016;45:1225.

    Article  CAS  Google Scholar 

  23. Jiang C, Wang K, Liu Y, Zhang C, Wang B. Application of textile technology in tissue engineering: a review. Acta Biomater 2021;128:60.

    Article  CAS  Google Scholar 

  24. Furtado M, Chen L, Chen Z, Chen A, Cui W. Development of fish collagen in tissue regeneration and drug delivery. Eng Regener 2022;3:217.

    Google Scholar 

  25. Li C, Cui W. 3D bioprinting of cell-laden constructs for regenerative medicine. Eng Regener 2021;2:195.

    Google Scholar 

  26. Liu C, Xu X, Cui W, Zhang H. Metal-organic framework (MOF)-based biomaterials in bone tissue engineering. Eng Regener 2021;2:105.

    Google Scholar 

  27. Tang Y, Chen C, Liu F, Xie S, Qu J, Li M, Li Z, Li X, Shi Q, Li S, Li X, Hu J, Lu H. Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials 2020;241:119837.

    Article  CAS  Google Scholar 

  28. Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of biomedical Scaffolds using biodegradable polymers. Chem Rev 2021;121:11238.

    Article  CAS  Google Scholar 

  29. Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 2009;38:1139.

    Article  CAS  Google Scholar 

  30. Akbari M, Tamayol A, Bagherifard S, Serex L, Mostafalu P, Faramarzi N, Mohammadi MH, Khademhosseini A. Textile technologies and tissue engineering: a path toward organ weaving. Adv Healthc Mater 2016;5:751.

    Article  CAS  Google Scholar 

  31. Echave MC, Domingues RMA, Gomez-Florit M, Pedraz JL, Reis RL, Orive G, Gomes ME. Biphasic hydrogels integrating mineralized and anisotropic features for interfacial tissue engineering. ACS Appl Mater Inter 2019;11:47771.

    Article  CAS  Google Scholar 

  32. Huang K, Du J, Xu J, Wu C, Chen C, Chen S, Zhu T, Jiang J, Zhao J. Tendon-bone junction healing by injectable bioactive thermo-sensitive hydrogel based on inspiration of tendon-derived stem cells. Mater Today Chem 2022;23:100720.

    Article  CAS  Google Scholar 

  33. Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, van Griensven M. Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng PT A 2017;23:859.

    Article  CAS  Google Scholar 

  34. Caliari SR, Weisgerber DW, Grier WK, Mahmassani Z, Boppart MD, Harley BA. Collagen scaffolds incorporating coincident gradations of instructive structural and biochemical cues for osteotendinous junction engineering. Adv Healthc Mater 2015;4:831.

    Article  CAS  Google Scholar 

  35. Ramakrishna H, Li T, He T, Temple J, King MW, Spagnoli A. Tissue engineering a tendon-bone junction with biodegradable braided Scaffolds. Biomater Res 2019;23:11.

    Article  Google Scholar 

  36. Li H, Fan J, Sun L, Liu X, Cheng P, Fan H. Functional regeneration of ligament-bone interface using a triphasic silk-based graft. Biomaterials 2016;106:180.

    Article  CAS  Google Scholar 

  37. Calejo I, Costa-Almeida R, Reis RL, Gomes ME. A textile platform using continuous aligned and textured composite microfibers to engineer tendon-to-bone interface gradient Scaffolds. Adv Healthc Mater 2019;8:e1900200.

    Article  Google Scholar 

  38. Zhu C, Pongkitwitoon S, Qiu J, Thomopoulos S, Xia Y. Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Adv Mater 2018;30:e1707306.

    Article  Google Scholar 

  39. Brennan DA, Conte AA, Kanski G, Turkula S, Hu X, Kleiner MT, Beachley V. Mechanical considerations for electrospun nanofibers in tendon and ligament repair. Adv Healthc Mater 2018;7:e1701277.

    Article  Google Scholar 

  40. Lim TK, Dorthe E, Williams A, D’Lima DD. Nanofiber Scaffolds by electrospinning for rotator cuff tissue engineering. Chonnam Med J 2021;57:13.

    Article  CAS  Google Scholar 

  41. Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX. Stem cell therapies in tendon-bone healing. World J Stem Cells 2021;13:753.

    Article  Google Scholar 

  42. Kenry LCT. Nanofiber technology: current status and emerging developments. Prog Polym Sci 2017;70:1.

    Article  CAS  Google Scholar 

  43. Shi S, Si Y, Han Y, Wu T, Iqbal MI, Fei B, Li RKY, Hu J, Qu J. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv Mater 2022;34:e2107938.

    Article  Google Scholar 

  44. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298.

    Article  CAS  Google Scholar 

  45. Park J-S. Electrospinning and its applications. Adv Nat Sci-Nanosci 2011;1:043002.

    Article  Google Scholar 

  46. Zhang X, Xie L, Wang X, Shao Z, Kong B. Electrospinning super-assembly of ultrathin fibers from single- to multi-Taylor cone sites. Appl Mater Today 2022;26:101272.

    Article  Google Scholar 

  47. SalehHudin HS, Mohamad EN, Mahadi WNL, Muhammad AA. Multiple-jet electrospinning methods for nanofiber processing: a review. Mater Manuf Process 2017;33:479.

    Article  Google Scholar 

  48. Li Y, Zhu J, Cheng H, Li G, Cho H, Jiang M, Gao Q, Zhang X. Developments of advanced electrospinning techniques: a critical review. Adv Mater Technol 2021;6:2100410.

    Article  Google Scholar 

  49. Huang C, Thomas NL. Fabrication of porous fibers via electrospinning: strategies and applications. Polym Rev 2019;60:595.

    Article  Google Scholar 

  50. Hou L, Wang N, Wu J, Cui Z, Jiang L, Zhao Y. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv Funct Mater 2018;28:1801114.

    Article  Google Scholar 

  51. Wen X, Xiong J, Lei S, Wang L, Qin X. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications. Adv Fiber Mater 2021;4:145.

    Article  Google Scholar 

  52. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010;28:325.

    Article  CAS  Google Scholar 

  53. Kchaou M, Alquraish M, Abuhasel K, Abdullah A, Ali AA. Electrospun nanofibrous Scaffolds: review of current progress in the properties and manufacturing process, and possible applications for COVID-19. Polymers (Basel) 2021;2021:13.

    Google Scholar 

  54. Ogueri KS, Laurencin CT. Nanofiber technology for regenerative engineering. ACS Nano 2020;14:9347.

    Article  CAS  Google Scholar 

  55. Nie G, Zhang Z, Wang T, Wang C, Kou Z. Electrospun one-dimensional electrocatalysts for oxygen reduction reaction: insights into structure-activity relationship. ACS Appl Mater Inter 2021;13:37961.

    Article  CAS  Google Scholar 

  56. Yoon J, Yang HS, Lee BS, Yu WR. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Adv Mater 2018;30:e1704765.

    Article  Google Scholar 

  57. Bi F, Dong X, Wang J, Liu G. Flexible Janus nanofiber to acquire tuned and enhanced simultaneous magnetism-luminescence bifunctionality. J Mater Sci 2014;49:7244.

    Article  CAS  Google Scholar 

  58. Zhan L, Deng J, Ke Q, Li X, Ouyang Y, Huang C, Liu X, Qian Y. Grooved fibers: preparation principles through electrospinning and potential applications. Adv Fiber Mater 2021;4:203.

    Article  Google Scholar 

  59. Forward KM, Rutledge GC. Free surface electrospinning from a wire electrode. Chem Eng J 2012;183:492.

    Article  CAS  Google Scholar 

  60. Vass P, Szabo E, Domokos A, Hirsch E, Galata D, Farkas B, Demuth B, Andersen SK, Vigh T, Verreck G, Marosi G, Nagy ZK. Scale-up of electrospinning technology: Applications in the pharmaceutical industry. Wires Nanomed Nanobi 2020;12:e1611.

    Article  Google Scholar 

  61. Wang Z, Tian Y, Zhang C, Wang Y, Deng W. Massively multiplexed electrohydrodynamic tip streaming from a thin disc. Phys Rev Lett 2021;126:064502.

    Article  CAS  Google Scholar 

  62. Liu SL, Huang YY, Zhang HD, Sun B, Zhang JC, Long YZ. Needleless electrospinning for large scale production of ultrathin polymer fibres. Mater Res Innov 2014;18:S4.

    Google Scholar 

  63. Zhang CL, Yu SH. Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 2014;43:4423.

    Article  CAS  Google Scholar 

  64. Juncos Bombin AD, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mat Sci Eng C-Mater 2020;114:110994.

    Article  CAS  Google Scholar 

  65. Dziemidowicz K, Sang Q, Wu J, Zhang Z, Zhou F, Lagaron JM, Mo X, Parker GJM, Yu DG, Zhu LM, Williams GR. Electrospinning for healthcare: recent advancements. J Mater Chem B 2021;9:939.

    Article  CAS  Google Scholar 

  66. Zhang X, Li L, Ouyang J, Zhang L, Xue J, Zhang H, Tao W. Electroactive electrospun nanofibers for tissue engineering. Nano Today 2021;39:101196.

    Article  CAS  Google Scholar 

  67. Zare M, Davoodi P, Ramakrishna S. Electrospun shape memory polymer micro-/nanofibers and tailoring their roles for biomedical applications. Nanomater (Basel) 2021;2021:11.

    Google Scholar 

  68. Dou Y, Zhang W, Kaiser A. Electrospinning of metal-organic frameworks for energy and environmental applications. Adv Sci 2020;7:1902590.

    Article  CAS  Google Scholar 

  69. Tebyetekerwa M, Ramakrishna S. What is next for electrospinning? Matter 2020;2:279.

    Article  CAS  Google Scholar 

  70. Hao Y, Hu F, Chen Y, Wang Y, Xue J, Yang S, Peng S. Recent progress of electrospun nanofibers for zinc-air batteries. Adv Fiber Mater 2021;4:185.

    Article  Google Scholar 

  71. Agarwal S, Greiner A, Wendorff JH. Functional materials by electrospinning of polymers. Prog Polym Sci 2013;38:963.

    Article  CAS  Google Scholar 

  72. Suja PS, Reshmi CR, Sagitha P, Sujith A. Electrospun nanofibrous membranes for water purification. Polym Rev 2017;57:467.

    Article  CAS  Google Scholar 

  73. Zhang F, Chen J, Yang J. Fiber materials for electrocatalysis applications. Adv Fiber Mater. 2022;2022:558.

    Google Scholar 

  74. Zhao J, Zhu W, Wang X, Liu L, Yu J, Ding B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles. ACS Nano 2019;14:1045.

    Article  Google Scholar 

  75. Zhou W, Yu X, Cao L, Yang M, Li Y, Si Y, Yu J, Ding B. Green and ethanol-resistant polyurethane nanofibrous membranes based on an ethanol solvent for waterproof and breathable textiles. Adv Sustain Syst 2020;4:2000105.

    Article  CAS  Google Scholar 

  76. Zhou W, Yu X, Li Y, Jiao W, Si Y, Yu J, Ding B. Green-solvent-processed fibrous membranes with water/oil/dust-resistant and breathable performances for protective textiles. ACS Appl Mater Inter 2021;13:2081.

    Article  CAS  Google Scholar 

  77. Zhou W, Gong X, Li Y, Si Y, Zhang S, Yu J, Ding B. Environmentally friendly waterborne polyurethane nanofibrous membranes by emulsion electrospinning for waterproof and breathable textiles. Chem Eng J 2022;427:130925.

    Article  CAS  Google Scholar 

  78. Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule 2020;4:724.

    Article  CAS  Google Scholar 

  79. Li D, Liu X, Li W, Lin Z, Zhu B, Li Z, Li J, Li B, Fan S, Xie J, Zhu J. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol 2021;16:153.

    Article  CAS  Google Scholar 

  80. Zhong H, Li Y, Zhang P, Gao S, Liu B, Wang Y, Meng T, Zhou Y, Hou H, Xue C, Zhao Y, Wang Z. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 2021;15:10076.

    Article  CAS  Google Scholar 

  81. Liu L, Xu W, Ding Y, Agarwal S, Greiner A, Duan G. A review of smart electrospun fibers toward textiles. Compos Commun 2020;2020:22.

    Google Scholar 

  82. Iqbal MI, Shi S, Kumar GMS, Hu JL. Evaporative/radiative electrospun membrane for personal cooling. Nano Res 2020;2020:698.

    Google Scholar 

  83. Gao C, Zhang L, Wang J, Jin M, Tang Q, Chen Z, Cheng Y, Yang R, Zhao G. Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B 2021;9:3106.

    Article  CAS  Google Scholar 

  84. Zhang X, Lv R, Chen L, Sun R, Zhang Y, Sheng R, Du T, Li Y, Qi Y. A multifunctional Janus electrospun nanofiber dressing with biofluid draining, monitoring, and antibacterial properties for wound healing. ACS Appl Mater Inter 2022;14:12984.

    Article  CAS  Google Scholar 

  85. Dong R, Li Y, Chen M, Xiao P, Wu Y, Zhou K, Zhao Z, Tang BZ. In situ electrospinning of aggregation-induced emission nanofibrous dressing for wound healing. Small Methods 2022;6:e2101247.

    Article  Google Scholar 

  86. Celebioglu A, Uyar T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. Mat Sci Eng C-Mater 2021;118:111514.

    Article  CAS  Google Scholar 

  87. Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: a review. J Control Release 2021;334:463.

    Article  CAS  Google Scholar 

  88. Parın FN, Aydemir Çİ, Taner G, Yıldırım K. Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility. J Ind Text 2021;2021:1528.

    Google Scholar 

  89. Ahmed J. Electrospinning for the manufacture of biosensor components: a mini-review. Med Dev Sensors. 2020;2020:4.

    Google Scholar 

  90. Liu Y, Hao M, Chen Z, Liu L, Liu Y, Yang W, Ramakrishna S. A review on recent advances in application of electrospun nanofiber materials as biosensors. Curr Opin Biomed Eng 2020;13:174.

    Article  CAS  Google Scholar 

  91. Crapnell RD, Street RJ, Ferreira-Silva V, Down MP, Peeters M, Banks CE. Electrospun nylon fibers with integrated polypyrrole molecularly imprinted polymers for the detection of glucose. Anal Chem 2021;93:13235.

    Article  CAS  Google Scholar 

  92. Frias IAM, Vega-Gonzales-Gil LH, Cordeiro MT, Oliveira MDL, Andrade CAS. Self-enriching electrospun biosensors for impedimetric sensing of zika virus. ACS Appl Mater Inter 2022;14:41.

    Article  CAS  Google Scholar 

  93. Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliver Rev 2021;174:504.

    Article  CAS  Google Scholar 

  94. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. Prog Mater Sci 2021;117:100721.

    Article  CAS  Google Scholar 

  95. Si Y, Guo C, Xu X, Zhang K, Tan R, Lau K-T, Hu J. Bioinspired Janus all-natural electrospinning membranes with directional water transport as ecofriendly dry facial masks. ACS Sustain Chem Eng 2022;2022:3659.

    Google Scholar 

  96. Robinson AJ, Pérez-Nava A, Ali SC, González-Campos JB, Holloway JL, Cosgriff-Hernandez EM. Comparative analysis of fiber alignment methods in electrospinning. Matter 2021;4:821.

    Article  CAS  Google Scholar 

  97. Zhao S, Zhao X, Dong S, Yu J, Pan G, Zhang Y, Zhao J, Cui W. A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. J Mater Chem B 2015;3:990.

    Article  CAS  Google Scholar 

  98. Kolluru PV, Lipner J, Liu W, Xia Y, Thomopoulos S, Genin GM, Chasiotis I. Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomater 2013;9:9442.

    Article  CAS  Google Scholar 

  99. Wang L, Zhu T, Kang Y, Zhang J, Du J, Gao H, Chen S, Jiang J, Zhao J. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact Mater 2022;16:149.

    Article  CAS  Google Scholar 

  100. Zhu Q, Ma Z, Li H, Wang H, He Y. Enhancement of rotator cuff tendon-bone healing using combined aligned electrospun fibrous membranes and kartogenin. RSC Adv 2019;9:15582.

    Article  CAS  Google Scholar 

  101. Yang R, Zheng Y, Zhang Y, Li G, Xu Y, Zhang Y, Xu Y, Zhuang C, Yu P, Deng L, Cui W, Chen Y, Wang L. Bipolar metal flexible electrospun fibrous membrane based on metal-organic framework for gradient healing of tendon-to-bone interface regeneration. Adv. Healthc. Mater. 2022;2022:e2200072.

    Article  Google Scholar 

  102. Cong S, Sun Y, Lin J, Liu S, Chen J. A synthetic graft with multilayered co-electrospinning nanoscaffolds for bridging massive rotator cuff tear in a rat model. Am J Sports Med 1826;2020:48.

    Google Scholar 

  103. Li X, Cheng R, Sun Z, Su W, Pan G, Zhao S, Zhao J, Cui W. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomater 2017;61:204.

    Article  CAS  Google Scholar 

  104. Hakimi O, Mouthuy PA, Zargar N, Lostis E, Morrey M, Carr A. A layered electrospun and woven surgical scaffold to enhance endogenous tendon repair. Acta Biomater 2015;26:124.

    Article  CAS  Google Scholar 

  105. Guan X, Xia H, Ni QQ. Shape memory polyurethane-based electrospun yarns for thermo-responsive actuation. J Appl Polym Sci 2021;2021:138.

    Google Scholar 

  106. Zhou Y, Fang J, Wang X, Lin T. Strip twisted electrospun nanofiber yarns: Structural effects on tensile properties. J Mater Res 2011;27:537.

    Article  CAS  Google Scholar 

  107. Jiang C, Wang K, Liu Y, Zhang C, Wang B. Using wet electrospun PCL/Gelatin/CNT yarns to fabricate textile-based scaffolds for vascular tissue engineering. ACS Biomater Sci Eng 2021;7:2627.

    Article  CAS  Google Scholar 

  108. Jiang C, Wang K, Liu Y, Zhang C, Wang B. Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering. J Mech Behav Biomed Mater 2021;119:104499.

    Article  CAS  Google Scholar 

  109. Smit E, Bűttner U, Sanderson RD. Continuous yarns from electrospun fibers. Polymer 2005;46:2419.

    Article  CAS  Google Scholar 

  110. Wei L, Qin X. Nanofiber bundles and nanofiber yarn device and their mechanical properties: a review. Text Res J 1885;2016:86.

    Google Scholar 

  111. Tian L, Yan T, Pan Z. Fabrication of continuous electrospun nanofiber yarns with direct 3D processability by plying and twisting. J Mater Sci 2015;50:7137.

    Article  CAS  Google Scholar 

  112. Chen S, Wang J, Chen Y, Mo X, Fan C. Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. Mat Sci Eng C-Mater 2021;119:111506.

    Article  CAS  Google Scholar 

  113. Li X, Yao C, Sun F, Song T, Li Y, Pu Y. Conjugate electrospinning of continuous nanofiber yarn of poly(L-lactide)/nanotricalcium phosphate nanocomposite. J Appl Polym Sci 2008;107:3756.

    Article  CAS  Google Scholar 

  114. Yao C, Li X, Song T. Preparation and characterization of zein and zein/poly-L-lactide nanofiber yarns. J Appl Polym Sci 2009;114:2079.

    Article  CAS  Google Scholar 

  115. Wu S, Zhou R, Zhou F, Streubel PN, Chen S, Duan B. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application. Mat Sci Eng C-Mater 2020;106:110268.

    Article  CAS  Google Scholar 

  116. Learn GD, McClellan PE, Knapik DM, Cumsky JL, Webster-Wood V, Anderson JM, Gillespie RJ, Akkus O. Woven collagen biotextiles enable mechanically functional rotator cuff tendon regeneration during repair of segmental tendon defects in vivo. J Biomed Mater Res B Appl Biomater 2019;107:1864.

    Article  CAS  Google Scholar 

  117. Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 2007;6:162.

    Article  CAS  Google Scholar 

  118. Krishnan AG, Joseph J, Chandra RR, Nair SV, Nair M, Menon D. Silk-based bilayered small diameter woven vascular conduits for improved mechanical and cellular characteristics. Int J Polym Mater 2021;2021:1.

    Google Scholar 

  119. Padmakumar S, Paul-Prasanth B, Pavithran K, Vijaykumar DK, Rajanbabu A, Sivanarayanan TB, Kadakia E, Amiji MM, Nair SV, Menon D. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomedicine 2019;15:274.

    Article  CAS  Google Scholar 

  120. Xie X, Cai J, Yao Y, Chen Y, Khan AR, Wu J, Mo X. A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Compos Part B-Eng 2021;2021:212.

    Google Scholar 

  121. Deacon F, Crow M, Rajah S, Kester R. Comparison of the thrombogenicity of four types of knitted Dacron arterial graft in an artificial circulation. Biomaterials 1985;6:64–7.

    Article  CAS  Google Scholar 

  122. Guo D, Wang S, Yin Y, Luo J, Meng C, Liu Q, Ni H, Feng J. Preparation of three-dimensional multilayer ECM-simulated woven/knitted fabric composite scaffolds for potential tissue engineering applications. Text Res J 2019;90:925.

    Article  Google Scholar 

  123. Ouyang HW, Goh JCH, Thambyah A, Teoh SH, Lee EH. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Eng 2003;9:431.

    Article  CAS  Google Scholar 

  124. Ruan D, Zhu T, Huang J, Le H, Hu Y, Zheng Z, Tang C, Chen Y, Ran J, Chen X, Yin Z, Qian S, Pioletti D, Heng BC, Chen W, Shen W, Ouyang HW. Knitted silk-collagen scaffold incorporated with ligament stem/progenitor cells sheet for anterior cruciate ligament reconstruction and osteoarthritis prevention. ACS Biomater Sci Eng 2019;5:5412.

    Article  CAS  Google Scholar 

  125. Chen X, Qi YY, Wang LL, Yin Z, Yin GL, Zou XH, Ouyang HW. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials 2008;29:3683.

    Article  CAS  Google Scholar 

  126. Cai J, Xie X, Li D, Wang L, Jiang J, Mo X, Zhao J. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering. Biomater Sci 2020;8:4413.

    Article  CAS  Google Scholar 

  127. Nowotny J, Aibibu D, Farack J, Nimtschke U, Hild M, Gelinsky M, Kasten P, Cherif C. Novel fiber-based pure chitosan scaffold for tendon augmentation: biomechanical and cell biological evaluation. J Biomat Sci-Polym E 2016;27:917.

    Article  CAS  Google Scholar 

  128. Czaplewski SK, Tsai TL, Duenwald-Kuehl SE, Vanderby R Jr, Li WJ. Tenogenic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells dictated by properties of braided submicron fibrous scaffolds. Biomaterials 2014;35:6907.

    Article  CAS  Google Scholar 

  129. Laranjeira M, Domingues RMA, Costa-Almeida R, Reis RL, Gomes ME. A 3D mimicry of native-tissue-fiber architecture guides tendon-derived cells and adipose stem cells into artificial tendon constructs. Small 2017;2017:13.

    Google Scholar 

  130. Rothrauff BB, Lauro BB, Yang G, Debski RE, Musahl V, Tuan RS. Braided and stacked electrospun nanofibrous Scaffolds for tendon and ligament tissue engineering. Tissue Eng Pt A 2017;23:378.

    Article  CAS  Google Scholar 

  131. Silva M, Ferreira FN, Alves NM, Paiva MC. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnol 2020;18:23.

    Article  CAS  Google Scholar 

  132. Akbari N, Khorshidi S, Karkhaneh A. Effect of piezoelectricity of nanocomposite electrospun scaffold on cell behavior in bone tissue engineering Iran. Polym J 2022;31:919–30.

    CAS  Google Scholar 

  133. Fernandez-Yague MA, Trotier A, Demir S, Abbah SA, Larranaga A, Thirumaran A, Stapleton A, Tofail SAM, Palma M, Kilcoyne M, Pandit A, Biggs MJ. A self-powered piezo-bioelectric device regulates tendon repair-associated signaling pathways through modulation of mechanosensitive ion channels. Adv Mater 2021;33:e2008788.

    Article  Google Scholar 

  134. Wang L, Zhang F, Liu Y, Leng J. Shape memory polymer fibers: materials, structures, and applications. Adv Fiber Mater 2021;4:5.

    Article  Google Scholar 

  135. Jacob J, More N, Kalia K, Kapusetti G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen 2018;38:2.

    Article  Google Scholar 

  136. Barbosa F, Ferreira FC, Silva JC. Piezoelectric electrospun fibrous Scaffolds for bone, articular cartilage and osteochondral tissue engineering. Int J Mol Sci 2022;23:1.

    Article  Google Scholar 

  137. Khare D, Basu B, Dubey AK. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 2020;258:120280.

    CAS  Google Scholar 

  138. More N, Kapusetti G. Piezoelectric material—a promising approach for bone and cartilage regeneration. Med Hypotheses 2017;108:10.

    Article  CAS  Google Scholar 

  139. Azimi B, Milazzo M, Lazzeri A, Berrettini S, Uddin MJ, Qin Z, Buehler MJ, Danti S. Electrospinning piezoelectric fibers for biocompatible devices. Adv Healthc Mater 2020;9:e1901287.

    Article  Google Scholar 

  140. Gritsch L, Maqbool M, Mourino V, Ciraldo FE, Cresswell M, Jackson PR, Lovell C, Boccaccini AR. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B 2019;7:6109.

    Article  CAS  Google Scholar 

  141. Zhang X, Li Z, Yang P, Duan G, Liu X, Gu Z, Li Y. Polyphenol scaffolds in tissue engineering. Mater Horiz 2021;8:145.

    Article  CAS  Google Scholar 

  142. Chen W, Zheng D, Chen Y, Ruan H, Zhang Y, Chen X, Shen H, Deng L, Cui W, Chen H. Electrospun fibers improving cellular respiration via mitochondrial protection. Small 2021;17:2104012.

    Article  CAS  Google Scholar 

  143. Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Translat 2021;29:60.

    Article  Google Scholar 

  144. Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q. Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta 2020;187:179.

    Article  CAS  Google Scholar 

  145. Lu H, Chen C, Wang Z, Qu J, Xu D, Wu T, Cao Y, Zhou J, Zheng C, Hu J. Characterization of calcium and zinc spatial distributions at the fibrocartilage zone of bone–tendon junction by synchrotron radiation-based micro X-ray fluorescence analysis combined with backscattered electron imaging. Spectrochim Acta B 2015;111:15.

    Article  CAS  Google Scholar 

  146. Lake SP, Liu Q, Xing M, Iannucci LE, Wang Z, Zhao C. Tendon and ligament tissue engineering. Principl Tissue Eng 2020;2020:989–1005.

    Google Scholar 

  147. Xie X, Chen Y, Wang X, Xu X, Shen Y, Khan AR, Aldalbahi A, Fetz AE, Bowlin GL, El-Newehy M, Mo X. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J Mater Sci Technol 2020;59:243.

    Article  CAS  Google Scholar 

  148. Zhong H, Huang J, Wu J, Du J. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res 2021;15:787.

    Article  Google Scholar 

  149. Mertz D, Harlepp S, Goetz J, Bégin D, Schlatter G, Bégin-Colin S, Hébraud A. Nanocomposite polymer scaffolds responding under external stimuli for drug delivery and tissue engineering applications. Adv Therapeut 2019;3:1900143.

    Article  Google Scholar 

  150. Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev 2017;46:4400.

    Article  CAS  Google Scholar 

  151. Kuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, Yeh CS. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew Chem Int Edit 2010;49:2711.

    Article  CAS  Google Scholar 

  152. Tindell RK, Busselle L, Holloway J. Magnetic fields enable precise spatial control of electrospun fiber alignment for fabricating complex gradient materials. Polym Sci 2022;2022:55.

    Google Scholar 

  153. Xing C, Chen S, Liang X, Liu Q, Qu M, Zou Q, Li J, Tan H, Liu L, Fan D, Zhang H. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced Swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl Mater Inter 2018;10:27631.

    Article  CAS  Google Scholar 

  154. Xie Z, Peng M, Lu R, Meng X, Liang W, Li Z, Qiu M, Zhang B, Nie G, Xie N, Zhang H, Prasad PN. Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light Sci Appl 2020;9:161.

    Article  CAS  Google Scholar 

  155. Yin F, Hu K, Chen S, Wang D, Zhang J, Xie M, Yang D, Qiu M, Zhang H, Li ZG. Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J Mater Chem B 2017;5:5433.

    Article  CAS  Google Scholar 

  156. Xie Z, Chen S, Duo Y, Zhu Y, Fan T, Zou Q, Qu M, Lin Z, Zhao J, Li Y, Liu L, Bao S, Chen H, Fan D, Zhang H. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl Mater Inter 2019;11:22129.

    Article  CAS  Google Scholar 

  157. Chen S, Xing C, Huang D, Zhou C, Ding B, Guo Z, Cao Y, et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci Adv 2020;6:15.

    Google Scholar 

  158. Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechan 2007;6:265.

    Article  Google Scholar 

  159. Altman GH, Horan RL, Martin I, Farhadi J, Stark PRH, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL. Cell differentiation by mechanical stress. FASEB J 2001;16:2.

    Google Scholar 

  160. Wu S, Wang Y, Streubel PN, Duan B. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater 2017;62:102.

    Article  CAS  Google Scholar 

  161. Sensini A, Cristofolini L, Zucchelli A, Focarete ML, Gualandi C, Dem A, Kao AP, Roldo M, Blunn G, Tozzi G. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. J Microsc 2020;277:3.

    Article  Google Scholar 

  162. Tseng LF, Mather PT, Henderson JH. Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater 2013;9:8790.

    Article  CAS  Google Scholar 

  163. Reifenrath J, Wellmann M, Kempfert M, Angrisani N, Welke B, Gniesmer S, Kampmann A, Menzel H, Willbold E. TGF-beta3 loaded electrospun polycaprolacton fibre scaffolds for rotator cuff tear repair: an in vivo study in rats. Int J Mol Sci 2020;2020:21.

    Google Scholar 

  164. Majidinia M, Reiter RJ, Shakouri SK, Mohebbi I, Rastegar M, Kaviani M, Darband SG, Jahanban-Esfahlan R, Nabavi SM, Yousefi B. The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018;45:33.

    Article  CAS  Google Scholar 

  165. Gao W, Lin M, Liang A, Zhang L, Chen C, Liang G, Xu C, Peng Y, Chen C, Huang D, Su P. Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res 2014;56:62.

    Article  CAS  Google Scholar 

  166. Song W, Ma Z, Wang C, Li H, He Y. Pro-chondrogenic and immunomodulatory melatonin-loaded electrospun membranes for tendon-to-bone healing. J Mater Chem B 2019;7:6564.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Startup Grant of CityU (“Laboratory of Wearable Materials for Healthcare”, Grant 9380116), National Natural Science Foundation of China (“Study of high performance fiber to be achieved by mimicking the hierarchical structure of spider-silk”, Grant 52073241; “Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”, Grant 51673162; “Developing Spider-Silk-Model Artificial Fibers by A Chemical Synthetic Approach”, Grant 15201719), and the Contract Research (“Development of Breathable Fabrics with Nano-Electrospun Membrane”, CityU ref.: 9231419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlian Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Si, Y., Zhao, Y. et al. Electrospun Textile Strategies in Tendon to Bone Junction Reconstruction. Adv. Fiber Mater. 5, 764–790 (2023). https://doi.org/10.1007/s42765-022-00233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00233-9

Keywords

Navigation