Skip to main content
Log in

Current Progress in Tendon and Ligament Tissue Engineering

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence.

Methods:

In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament.

Results:

Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro.

Conclusions:

Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 2013;99:203–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chainani A, Hippensteel KJ, Kishan A, Garrigues NW, Ruch DS, Guilak F, et al. Multilayered electrospun scaffolds for tendon tissue engineering. Tissue Eng Part A. 2013;19:2594–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84:222–39.

    CAS  PubMed  Google Scholar 

  4. Dhammi IK, Rehan-Ul-Haq, Kumar S. Graft choices for anterior cruciate ligament reconstruction. Indian J Orthop. 2015;49:127–8.

    PubMed  PubMed Central  Google Scholar 

  5. Chen T, Jiang J, Chen S. Status and headway of the clinical application of artificial ligaments. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2015;2:15–26.

    PubMed  PubMed Central  Google Scholar 

  6. Randelli P, Spennacchio P, Ragone V, Arrigoni P, Casella A, Cabitza P. Complications associated with arthroscopic rotator cuff repair: a literature review. Musculoskelet Surg. 2012;96:9–16.

    CAS  PubMed  Google Scholar 

  7. Schilaty ND, Nagelli C, Bates NA, Sanders TL, Krych AJ, Stuart MJ, et al. Incidence of second anterior cruciate ligament tears and identification of associated risk factors from 2001 to 2010 using a geographic database. Orthop J Sports Med. 2017;5:2325967117724196.

    PubMed  PubMed Central  Google Scholar 

  8. Hanada M, Takahashi M, Matsuyama Y. Open re-rupture of the Achilles tendon after surgical treatment. Clin Pract. 2011;1:e134.

    PubMed  PubMed Central  Google Scholar 

  9. Amin NH, Volpi A, Lynch TS, Patel RM, Cerynik DL, Schickendantz MS, et al. Complications of distal biceps tendon repair: a meta-analysis of single-incision versus double-incision surgical technique. Orthop J Sports Med. 2016;4:2325967116668137.

    PubMed  PubMed Central  Google Scholar 

  10. Hinchey JW, Aronowitz JG, Sanchez-Sotelo J, Morrey BF. Re-rupture rate of primarily repaired distal biceps tendon injuries. J Shoulder Elbow Surg. 2014;23:850–4.

    PubMed  Google Scholar 

  11. Kemler E, Thijs KM, Badenbroek I, van de Port IG, Hoes AW, Backx FJ. Long-term prognosis of acute lateral ankle ligamentous sprains: high incidence of recurrences and residual symptoms. Fam Pract. 2016;33:596–600.

    PubMed  Google Scholar 

  12. Oryan A, Moshiri A, Meimandi-Parizi A. Graft selection in ACL reconstructive surgery: past, present, and future. Curr Orthop Pract. 2013;24:321–33.

    Google Scholar 

  13. Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm. 2017;523:441–53.

    CAS  PubMed  Google Scholar 

  14. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang G, Rothrauff BB, Lin H, Yu S, Tuan RS. Tendon-derived extracellular matrix enhances transforming growth factor-β3-induced tenogenic differentiation of human adipose-derived stem cells. Tissue Eng Part A. 2017;23:166–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim J, Razi ZRM, Law JX, Nawi AM, Idrus RBH, Chin TG, et al. Mesenchymal stromal cells from the maternal segment of human umbilical cord is ideal for bone regeneration in allogenic setting. Tissue Eng Regen Med. 2018;15:75–87.

    CAS  PubMed  Google Scholar 

  17. Dai L, Hu X, Zhang X, Zhu J, Zhang J, Fu X, et al. Different tenogenic differentiation capacities of different mesenchymal stem cells in the presence of BMP-12. J Transl Med. 2015;13:200.

    PubMed  PubMed Central  Google Scholar 

  18. Bhatia R, Hare JM. Mesenchymal stem cells: future source for reparative medicine. Congest Hear Fail. 2005;11:87–91.

    Google Scholar 

  19. Yuan T, Zhang CQ, Wang JH. Augmenting tendon and ligament repair with platelet-rich plasma (PRP). Muscles Ligaments Tendons J. 2013;3:139–49.

    PubMed  PubMed Central  Google Scholar 

  20. Sevivas N, Teixeira FG, Portugal R, Direito-Santos B, Espregueira-Mendes J, Oliveira FJ, et al. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivo when a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear. Am J Sports Med. 2018;46:449–59.

    PubMed  Google Scholar 

  21. Tetta C, Consiglio AL, Bruno S, Tetta E, Gatti E, Dobreva M, et al. The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair? Muscles Ligaments Tendons J. 2012;2:212–21.

    PubMed  PubMed Central  Google Scholar 

  22. Kirkendall DT, Garrett WE. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997;7:62–6.

    CAS  PubMed  Google Scholar 

  23. Norris CM. Sports and soft tissue injuries: A guide for students and therapists. 5th ed. London: Taylor & Francis; 2018.

    Google Scholar 

  24. O’Brien M. Anatomy of tendons. In: Maffulli N, Renstrom P, Leadbetter WB, editors. Tendon injuries. London: Springer; 2005. p. 3–13.

    Google Scholar 

  25. Frank CB. Ligament structure, physiology and function. J Musculoskelet Neuronal Interact. 2004;4:199–201.

    CAS  PubMed  Google Scholar 

  26. Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V. Collagen structure of tendon relates to function. ScientificWorldJournal. 2007;7:404–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10:312–20.

    CAS  PubMed  Google Scholar 

  28. Józsa L, Lehto M, Kvist M, Bálint JB, Reffy A. Alterations in dry mass content of collagen fibers in degenerative tendinopathy and tendon-rupture. Matrix. 1989;9:140–6.

    PubMed  Google Scholar 

  29. Józsa L, Kannus P. Human tendons: anatomy, physiology and pathology. 1st ed. Champaign: Human Kinetics Publisher; 1997.

    Google Scholar 

  30. Robi K, Jakob N, Matevz K, Matjaz V. The physiology of sports injuries and repair processes. In: Hamlin M, Draper N, Kathiravel Y, editors. Current issues in sports and exercise medicine. London: InTech; 2013. https://doi.org/10.5772/54234.

    Chapter  Google Scholar 

  31. Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6:181–90.

    CAS  PubMed  Google Scholar 

  32. Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater. 2015;52:1–13.

    PubMed  PubMed Central  Google Scholar 

  33. Sasaki N, Shukunami N, Matsushima N, Izumi Y. Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J Biomech. 1999;32:285–92.

    CAS  PubMed  Google Scholar 

  34. Xu B, Chow MJ, Zhang Y. Experimental and modeling study of collagen scaffolds with the effects of crosslinking and fiber alignment. Int J Biomater. 2011;2011:172389.

    PubMed  PubMed Central  Google Scholar 

  35. Louis-Ugbo J, Leeson B, Hutton WC. Tensile properties of fresh human calcaneal (Achilles) tendons. Clin Anat. 2004;17:30–5.

    PubMed  Google Scholar 

  36. Freedman BR, Gordon JA, Soslowsky LJ. The Achilles tendon: fundamental properties and mechanisms governing healing. Muscles Ligaments Tendons J. 2014;4:245–55.

    PubMed  PubMed Central  Google Scholar 

  37. Kannus P, Natri A. Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports. 1997;7:107–12.

    CAS  PubMed  Google Scholar 

  38. Vilarta R, Vidal Bde C. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: aggregation and macromolecular order in collagen bundles. Matrix. 1989;9:55–61.

    CAS  PubMed  Google Scholar 

  39. Kannus P, Józsa L, Natri A, Järvinen M. Effects of training, immobilization and remobilization on tendons. Scand J Med Sci Sports. 1997;7:67–71.

    CAS  PubMed  Google Scholar 

  40. Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9:3–19.

    PubMed  Google Scholar 

  41. Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol. 1999;521 Pt 1:307–13.

    CAS  PubMed  Google Scholar 

  42. James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33:102–12.

    PubMed  Google Scholar 

  43. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–59.

    Google Scholar 

  44. Briggs AM, Woolf AD, Dreinhöfer K, Homb N, Hoy DG, Kopansky-Giles D, et al. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 2018;96:366–8.

    PubMed  PubMed Central  Google Scholar 

  45. Wu F, Nerlich M, Docheva D. Tendon injuries: basic science and new repair proposals. EFORT Open Rev. 2017;2:332–42.

    PubMed  PubMed Central  Google Scholar 

  46. Nigg BM. The role of impact forces and foot pronation: a new paradigm. Clin J Sport Med. 2001;11:2–9.

    CAS  PubMed  Google Scholar 

  47. Selvanetti A, Cipolla M, Puddu G. Overuse tendon injuries: basic science and classification. Oper Tech Sports Med. 1997;5:110–7.

    Google Scholar 

  48. Pedowitz D, Kirwan G. Achilles tendon ruptures. Curr Rev Musculoskelet Med. 2013;6:285–93.

    PubMed  PubMed Central  Google Scholar 

  49. Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42:311–9.

    PubMed  PubMed Central  Google Scholar 

  50. Bruns J, Kampen J, Kahrs J, Plitz W. Achilles tendon rupture: experimental results on spontaneous repair in a sheep-model. Knee Surg Sports Traumatol Arthrosc. 2000;8:364–9.

    CAS  PubMed  Google Scholar 

  51. Geremia JM, Bobbert MF, Casa Nova M, Ott RD, Lemos Fde A, Lupion Rde O, et al. The structural and mechanical properties of the Achilles tendon 2 years after surgical repair. Clin Biomech (Bristol, Avon). 2015;30:485–92.

    Google Scholar 

  52. Sen S, Badge R, Murali R. Ligament injuries of the hand. Orthop Trauma. 2019;33:38–44.

    Google Scholar 

  53. Ackermann PW. Tendinopathy I: understanding epidemiology, pathology, healing, and treatment. In: Gomes ME, Reis RL, Rodrigues MT, editors. Tendon regeneration. London: Elsevier; 2015. p. 113–47.

    Google Scholar 

  54. Rodrigues MT, Reis RL, Gomes ME. Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med. 2013;7:673–86.

    CAS  PubMed  Google Scholar 

  55. Siegel L, Vandenakker-Albanese C, Siegel D. Anterior cruciate ligament injuries: anatomy, physiology, biomechanics, and management. Clin J Sport Med. 2012;22:349–55.

    PubMed  Google Scholar 

  56. Chan KM, Fu SC. Anti-inflammatory management for tendon injuries—friends or foes? Sports Med Arthrosc Rehabil Ther Technol. 2009;1:23.

    PubMed  PubMed Central  Google Scholar 

  57. Ziltener JL, Leal S, Fournier PE. Non-steroidal anti-inflammatory drugs for athletes: an update. Ann Phys Rehabil Med. 2010;53:278–88.

    PubMed  Google Scholar 

  58. Connizzo BK, Yannascoli SM, Tucker JJ, Caro AC, Riggin CN, Mauck RL, et al. The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clin Orthop Relat Res. 2014;472:2433–9.

    PubMed  Google Scholar 

  59. Monk AP, Davies LJ, Hopewell S, Harris K, Beard DJ, Price AJ. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. Cochrane Database Syst Rev. 2016;4:CD011166.

    PubMed  Google Scholar 

  60. Al-Mohrej OA, Al-Kenani NS. Acute ankle sprain: conservative or surgical approach? EFORT Open Rev. 2016;1:34–44.

    PubMed  PubMed Central  Google Scholar 

  61. van Dijk PAD, Kerkhoffs GMMJ, van Dijk CN. Peroneal tendon injuries. In: Canata GL, D’Hooghe P, Hunt KJ, Kerkhoffs GMMJ, Longo UG, editors. Sports injuries of the foot and ankle: a focus on advanced surgical techniques. Berlin: Springer; 2019. p. 317–26.

    Google Scholar 

  62. LaBella CR, Hennrikus W, Hewett TE, Brenner JS, Brookes MA, Demorest RA, et al.. Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics. 2014;133:e1437–50.

    PubMed  Google Scholar 

  63. Sakabe T, Sakai T. Musculoskeletal diseases—tendon. Br Med Bull. 2011;99:211–25.

    PubMed  PubMed Central  Google Scholar 

  64. Mascarenhas R, Tranovich MJ, Kropf EJ, Fu FH, Harner CD. Bone-patellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2–10 year follow-up. Knee Surgery Sport Traumatol Arthrosc. 2012;20:1520–7.

    Google Scholar 

  65. Batty LM, Norsworthy CJ, Lash NJ, Wasiak J, Richmond AK, Feller JA. Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy. 2015;31:957–68.

    PubMed  Google Scholar 

  66. Parchi PD, Ciapini G, Paglialunga C, Giuntoli M, Picece C, Chiellini F, et al. Anterior cruciate ligament reconstruction with LARS artificial ligament-clinical results after a long-term follow-up. Joints. 2018;6:75–9.

    PubMed  PubMed Central  Google Scholar 

  67. Mascarenhas R, MacDonald PB. Anterior cruciate ligament reconstruction: a look at prosthetics–past, present and possible future. Mcgill J Med. 2008;11:29–37.

    PubMed  PubMed Central  Google Scholar 

  68. Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices. 2009;6:61–73.

    PubMed  Google Scholar 

  69. Meyer U. The history of tissue engineering and regenerative medicine in perspective. In: Meyer U, Handschel J, Wiesmann HP, Meyer T, editors. Fundamentals of tissue engineering and regenerative medicine. Berlin: Springer; 2009. p. 5–12.

    Google Scholar 

  70. Law JX, Liau LL, Aminuddin BS, Ruszymah BH. Tissue-engineered trachea: A review. Int J Pediatr Otorhinolaryngol. 2016;91:55–63.

    PubMed  Google Scholar 

  71. Law JX, Liau LL, Saim A, Yang Y, Idrus R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med. 2017;14:699–718.

    PubMed  PubMed Central  Google Scholar 

  72. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7:229–58.

    CAS  PubMed  Google Scholar 

  73. Santos ML, Rodrigues MT, Domingues RMA, Reis RL, Gomes ME. Biomaterials as tendon and ligament substitutes: current developments. In: Oliveira JM, Reis RL, editors. Regenerative strategies for the treatment of knee joint disabilities. Cham: Springer; 2016. p. 349–71.

    Google Scholar 

  74. Fan H, Liu H, Wong EJ, Toh SL, Goh JC. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29:3324–37.

    CAS  PubMed  Google Scholar 

  75. Fan H, Liu H, Toh SL, Goh JC. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30:4967–77.

    CAS  PubMed  Google Scholar 

  76. Petrigliano FA, Arom GA, Nazemi AN, Yeranosian MG, Wu BM, McAllister DR. In vivo evaluation of electrospun polycaprolactone graft for anterior cruciate ligament engineering. Tissue Eng Part A. 2015;21:1228–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Leong NL, Kabir N, Arshi A, Nazemi A, Wu B, Petrigliano FA, et al. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction. Tissue Eng Part A. 2015;21:1859–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee KI, Lee JS, Kang KT, Shim YB, Kim YS, Jang JW, et al. In vitro and in vivo performance of tissue-engineered tendons for anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46:1641–9.

    PubMed  Google Scholar 

  79. Deng D, Wang W, Wang B, Zhang P, Zhou G, Zhang WJ, et al. Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials. 2014;35:8801–9.

    CAS  PubMed  Google Scholar 

  80. Chen E, Yang L, Ye C, Zhang W, Ran J, Xue D, et al. An asymmetric chitosan scaffold for tendon tissue engineering: in vitro and in vivo evaluation with rat tendon stem/progenitor cells. Acta Biomater. 2018;73:377–87.

    CAS  PubMed  Google Scholar 

  81. Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int. 2011;108:243–8.

    PubMed  PubMed Central  Google Scholar 

  82. Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, et al. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J. 2013;10:493–500.

    PubMed  PubMed Central  Google Scholar 

  83. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.

    CAS  PubMed  Google Scholar 

  84. Francisco JC, Cunha RC, Simeoni RB, Guarita-Souza LC, Ferreira RJ, Irioda AC, et al. Amniotic membrane as a potent source of stem cells and a matrix for engineering heart tissue. J Biomed Sci Eng. 2013;6:1178–85.

    Google Scholar 

  85. Gobinathan S, Zainol SS, Azizi SF, Iman NM, Muniandy R, Hasmad HN, et al. Decellularization and genipin crosslinking of amniotic membrane suitable for tissue engineering applications. J Biomater Sci Polym Ed. 2018;29:2051–67.

    CAS  PubMed  Google Scholar 

  86. Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20:173–7.

    CAS  PubMed  Google Scholar 

  87. Tseng SC, Espana EM, Kawakita T, Di Pascuale MA, Li W, He H, et al. How does amniotic membrane work? Ocul Surf. 2004;2:177–87.

    PubMed  Google Scholar 

  88. Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C. Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res. 2002;63:591–600.

    CAS  PubMed  Google Scholar 

  89. Boo L, Sofiah S, Selvaratnam L, Tai CC, Pingguan-Murphy B, Kamarul T. A preliminary study of human amniotic membrane as a potential chondrocyte carrier. Malays Orthop J. 2009;3:16–23.

    Google Scholar 

  90. Benson-Martin J, Zammaretti P, Bilic G, Schweizer T, Portmann-Lanz B, Burkhardt T, et al. The Young’s modulus of fetal preterm and term amniotic membranes. Eur J Obstet Gynecol Reprod Biol. 2006;128:103–7.

    PubMed  Google Scholar 

  91. Yang JJ, Jang EC, Song KS, Lee JS, Kim MK, Chang SH. The effect of amniotic membrane transplantation on tendon-healing in a rabbit achilles tendon model. Tissue Eng Regen Med. 2010;7:323–9.

    CAS  Google Scholar 

  92. Nicodemo MC, Neves LR, Aguiar JC, Brito FS, Ferreira I, Sant’Anna LB, et al. Amniotic membrane as an option for treatment of acute Achilles tendon injury in rats. Acta Cir Bras. 2017;32:125–39.

    PubMed  Google Scholar 

  93. Ozgenel GY. The effects of a combination of hyaluronic and amniotic membrane on the formation of peritendinous adhesions after flexor tendon surgery in chickens. J Bone Joint Surg Br. 2004;86:301–7.

    CAS  PubMed  Google Scholar 

  94. Dogramaci Y, Duman IG. Reinforcement of the flexor tendon repair using human amniotic membrane: a biomechanical evaluation using the modified kessler method of tendon repair. J Am Podiatr Med Assoc. 2016;106:319–22.

    PubMed  Google Scholar 

  95. Leppänen OV, Karjalainen T, Göransson H, Hakamäki A, Havulinna J, Parkkinen J, et al. Outcomes after flexor tendon repair combined with the application of human amniotic membrane allograft. J Hand Surg Am. 2017;42:474.e1–8.

    Google Scholar 

  96. Seo YK, Kim JH, Eo SR. Co-effect of silk and amniotic membrane for tendon repair. J Biomater Sci Polym Ed. 2016;27:1232–47.

    CAS  PubMed  Google Scholar 

  97. Levengood GA. Arthroscopic-assisted anterior cruciate ligament reconstruction using hamstring autograft augmented with a dehydrated human amnion/chorion membrane allograft: a retrospective case report. Orthop Muscular Syst. 2016;5:213.

    Google Scholar 

  98. Zelen CM, Poka A, Andrews J. Prospective, randomized, blinded, comparative study of injectable micronized dehydrated amniotic/chorionic membrane allograft for plantar fasciitis—a feasibility study. Foot Ankle Int. 2013;34:1332–9.

    PubMed  Google Scholar 

  99. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl. 2007;27:504–9.

    CAS  Google Scholar 

  100. Ngadiman NHA, Noordin MY, Idris A, Kurniawan D. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc Inst Mech Eng H. 2017;231:597–616.

    PubMed  Google Scholar 

  101. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. 2013;2013:789289.

    Google Scholar 

  102. Xu Y, Wu J, Wang H, Li H, Di N, Song L, et al. Fabrication of electrospun poly(L-lactide-co-ɛ-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods. 2013;19:925–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Barber JG, Handorf AM, Allee TJ, Li WJ. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng Part A. 2013;19:1265–74.

    CAS  PubMed  Google Scholar 

  104. Orr SB, Chainani A, Hippensteel KJ, Kishan A, Gilchrist C, Garrigues NW, et al. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomater. 2015;24:117–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Maghdouri-White Y, Petrova S, Sori N, Polk S, Wriggers H, Ogle R, et al. Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomed Phys Eng Express. 2018;4:025013.

    Google Scholar 

  106. Sensini A, Gualandi C, Cristofolini L, Tozzi G, Dicarlo M, Teti G, et al. Biofabrication of bundles of poly (lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon. Biofabrication. 2017;9:015025.

    PubMed  Google Scholar 

  107. Wu S, Wang Y, Streubel PN, Duan B. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater. 2017;62:102–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells. 2009;27:1276–87.

    CAS  PubMed  Google Scholar 

  109. Xu W, Wang Y, Liu E, Sun Y, Luo Z, Xu Z, et al. Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A. 2013;19:2439–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liau LL, Makpol S, Azurah AGN, Chua KH. Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation. Cytotechnology. 2018;70:1221–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tan Q, Lui PP, Rui YF, Wong YM. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Eng Part A. 2012;18:840–51.

    CAS  PubMed  Google Scholar 

  112. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy. 2016;18:1493–502.

    CAS  PubMed  Google Scholar 

  113. Hafez P, Chowdhury SR, Jose S, Law JX, Ruszymah BHI, Mohd Ramzisham AR, et al. Development of an in vitro cardiac ischemic model using primary human cardiomyocytes. Cardiovasc Eng Technol. 2018;9:529–38.

    PubMed  Google Scholar 

  114. Kwon DR, Park GY, Lee SC. Treatment of full-thickness rotator cuff tendon tear using umbilical cord blood-derived mesenchymal stem cells and polydeoxyribonucleotides in a rabbit model. Stem Cells Int. 2018;2018:7146384.

    PubMed  PubMed Central  Google Scholar 

  115. Yokoya S, Mochizuki Y, Natsu K, Omae H, Nagata Y, Ochi M. Rotator cuff regeneration using a bioabsorbable material with bone marrow–derived mesenchymal stem cells in a rabbit model. Am J Sports Med. 2012;40:1259–68.

    PubMed  Google Scholar 

  116. Geburek F, Roggel F, van Schie HTM, Beineke A, Estrada R, Weber K, et al. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: a controlled experimental trial. Stem Cell Res Ther. 2017;8:129.

    PubMed  PubMed Central  Google Scholar 

  117. Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res. 2008;332:469–78.

    PubMed  Google Scholar 

  118. Park GY, Kwon DR, Lee SC. Regeneration of full-thickness rotator cuff tendon tear after ultrasound-guided injection with umbilical cord blood-derived mesenchymal stem cells in a rabbit model. Stem Cells Transl Med. 2015;4:1344–51.

    PubMed  PubMed Central  Google Scholar 

  119. Conze P, van Schie HT, van Weeren R, Staszyk C, Conrad S, Skutella T, et al. Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions. Regen Med. 2014;9:743–57.

    CAS  PubMed  Google Scholar 

  120. Lee SY, Kim W, Lim C, Chung SG. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study. Stem Cells. 2015;33:2995–3005.

    CAS  PubMed  Google Scholar 

  121. Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38:1811–8.

    PubMed  Google Scholar 

  122. Kim YS, Lee HJ, Ok JH, Park JS, Kim DW. Survivorship of implanted bone marrow-derived mesenchymal stem cells in acute rotator cuff tear. J Shoulder Elbow Surg. 2013;22:1037–45.

    PubMed  Google Scholar 

  123. Geburek F, Mundle K, Conrad S, Hellige M, Walliser U, van Schie HT, et al. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions-a pilot study. Stem Cell Res Ther. 2016;7:21.

    PubMed  PubMed Central  Google Scholar 

  124. Carvalho AM, Yamada AL, Golim MA, Álvarez LE, Hussni CA, Alves AL. Evaluation of mesenchymal stem cell migration after equine tendonitis therapy. Equine Vet J. 2014;46:635–8.

    CAS  PubMed  Google Scholar 

  125. Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem. 2011;286:5855–67.

    CAS  PubMed  Google Scholar 

  126. Tao X, Liu J, Chen L, Zhou Y, Tang K. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem. 2015;35:699–709.

    CAS  PubMed  Google Scholar 

  127. Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, et al. BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One. 2011;6:e17531.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu H, Zhang C, Zhu S, Lu P, Zhu T, Gong X, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells. 2015;33:443–55.

    CAS  PubMed  Google Scholar 

  129. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow—derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39:1282–9.

    PubMed  Google Scholar 

  130. Wang A, Breidahl W, Mackie KE, Lin Z, Qin A, Chen J, et al. Autologous tenocyte injection for the treatment of severe, chronic resistant lateral epicondylitis: a pilot study. Am J Sports Med. 2013;41:2925–32.

    PubMed  Google Scholar 

  131. Wang A, Mackie K, Breidahl W, Wang T, Zheng MH. Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: mean 4.5-year clinical follow-up. Am J Sports Med. 2015;43:1775–83.

    PubMed  Google Scholar 

  132. Güngörmüş C, Kolankaya D, Aydin E. Histopathological and biomechanical evaluation of tenocyte seeded allografts on rat Achilles tendon regeneration. Biomaterials. 2015;51:108–18.

    PubMed  Google Scholar 

  133. Liang JI, Lin PC, Chen MY, Hsieh TH, Chen JJ, Yeh ML. The effect of tenocyte/hyaluronic acid therapy on the early recovery of healing Achilles tendon in rats. J Mater Sci Mater Med. 2014;25:217–27.

    CAS  PubMed  Google Scholar 

  134. Chen J, Yu Q, Wu B, Lin Z, Pavlos NJ, Xu J, et al. Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model. Tissue Eng Part A. 2011;17:2037–48.

    CAS  PubMed  Google Scholar 

  135. Chen JM, Willers C, Xu J, Wang A, Zheng MH. Autologous tenocyte therapy using porcine-derived bioscaffolds for massive rotator cuff defect in rabbits. Tissue Eng. 2007;13:1479–91.

    CAS  PubMed  Google Scholar 

  136. Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.

    Google Scholar 

  137. Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. 2014;12:162.

    PubMed  PubMed Central  Google Scholar 

  138. Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41.

    CAS  PubMed  Google Scholar 

  139. McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: mechanisms of uptake. J Circ Biomark. 2015;4:7.

    PubMed  PubMed Central  Google Scholar 

  140. Lange-Consiglio A, Perrini C, Tasquier R, Deregibus MC, Camussi G, Pascucci L, et al. Equine amniotic microvesicles and their anti-inflammatory potential in a tenocyte model in vitro. Stem Cells Dev. 2016;25:610–21.

    CAS  PubMed  Google Scholar 

  141. Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet-derived growth factor BB–coated sutures on rotator cuff healing in a sheep model. Arthroscopy. 2010;26:1456–62.

    PubMed  Google Scholar 

  142. Hee CK, Dines JS, Dines DM, Roden CM, Wisner-Lynch LA, Turner AS, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am J Sports Med. 2011;39:1630–9.

    PubMed  Google Scholar 

  143. Kovacevic D, Gulotta LV, Ying L, Ehteshami JR, Deng XH, Rodeo SA. rhPDGF-BB promotes early healing in a rat rotator cuff repair model. Clin Orthop Relat Res. 2015;473:1644–54.

    PubMed  Google Scholar 

  144. Tokunaga T, Ide J, Arimura H, Nakamura T, Uehara Y, Sakamoto H, et al. Local application of gelatin hydrogel sheets impregnated with platelet-derived growth factor BB promotes tendon-to-bone healing after rotator cuff repair in rats. Arthroscopy. 2015;31:1482–91.

    PubMed  Google Scholar 

  145. Ghebes CA, Groen N, Cheuk YC, Fu SC, Fernandes HM, Saris DBF. Muscle-secreted factors improve anterior cruciate ligament graft healing: an in vitro and in vivo analysis. Tissue Eng Part A. 2018;24:322–34.

    CAS  PubMed  Google Scholar 

  146. Rubio-Azpeitia E, Sánchez P, Delgado D, Andia I. Adult cells combined with platelet-rich plasma for tendon healing: cell source options. Orthop J Sports Med. 2017;5:2325967117690846.

    PubMed  PubMed Central  Google Scholar 

  147. Law JX, Chowdhury SR, Saim AB, Idrus RBH. Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds. J Tissue Viability. 2017;26:208–15.

    PubMed  Google Scholar 

  148. Xian LJ, Chowdhury SR, Bin Saim A, Idrus RB. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing. Cytotherapy. 2015;17:293–300.

    CAS  PubMed  Google Scholar 

  149. Hapa O, Cakıcı H, Kükner A, Aygün H, Sarkalan N, Baysal G. Effect of platelet-rich plasma on tendon-to-bone healing after rotator cuff repair in rats: an in vivo experimental study. Acta Orthop Traumatol Turc. 2012;46:301–7.

    PubMed  Google Scholar 

  150. Beck J, Evans D, Tonino PM, Yong S, Callaci JJ. The biomechanical and histologic effects of platelet-rich plasma on rat rotator cuff repairs. Am J Sports Med. 2012;40:2037–44.

    PubMed  PubMed Central  Google Scholar 

  151. Dolkart O, Chechik O, Zarfati Y, Brosh T, Alhajajra F, Maman E. A single dose of platelet-rich plasma improves the organization and strength of a surgically repaired rotator cuff tendon in rats. Arch Orthop Trauma Surg. 2014;134:1271–7.

    PubMed  Google Scholar 

  152. Bosch G, van Schie HT, de Groot MW, Cadby JA, van de Lest CH, Barneveld A, et al. Effects of platelet-rich plasma on the quality of repair of mechanically induced core lesions in equine superficial digital flexor tendons: a placebo-controlled experimental study. J Orthop Res. 2010;28:211–7.

    CAS  PubMed  Google Scholar 

  153. Bosch G, Moleman M, Barneveld A, van Weeren PR, van Schie HT. The effect of platelet-rich plasma on the neovascularization of surgically created equine superficial digital flexor tendon lesions. Scand J Med Sci Sports. 2011;21:554–61.

    CAS  PubMed  Google Scholar 

  154. Shams A, El-Sayed M, Gamal O, Ewes W. Subacromial injection of autologous platelet-rich plasma versus corticosteroid for the treatment of symptomatic partial rotator cuff tears. Eur J Orthop Surg Traumatol. 2016;26:837–42.

    PubMed  Google Scholar 

  155. Rodeo SA, Delos D, Williams RJ, Adler RS, Pearle A, Warren RF. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40:1234–41.

    PubMed  Google Scholar 

  156. Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2014;4:CD010071.

    Google Scholar 

  157. Sun L, Qu L, Zhu R, Li H, Xue Y, Liu X, et al. Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells Int. 2016;2016:9842075.

    PubMed  PubMed Central  Google Scholar 

  158. Lohberger B, Kaltenegger H, Stuendl N, Rinner B, Leithner A, Sadoghi P. Impact of cyclic mechanical stimulation on the expression of extracellular matrix proteins in human primary rotator cuff fibroblasts. Knee Surg Sports Traumatol Arthrosc. 2016;24:3884–91.

    PubMed  Google Scholar 

  159. Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell–collagen sponge constructs for patellar tendon repair. Tissue Eng. 2007;13:1219–26.

    CAS  PubMed  Google Scholar 

  160. Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, et al. Effects of mechanical stimulation on the biomechanics and histology of stem cell–collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 2006;12:2291–300.

    CAS  PubMed  Google Scholar 

  161. Mace J, Wheelton A, Khan WS, Anand S. The role of bioreactors in ligament and tendon tissue engineering. Curr Stem Cell Res Ther. 2016;11:35–40.

    CAS  PubMed  Google Scholar 

  162. Hohlrieder M, Teuschl AH, Cicha K, van Griensven M, Redl H, Stampfl J. Bioreactor and scaffold design for the mechanical stimulation of anterior cruciate ligament grafts. Biomed Mater Eng. 2013;23:225–37.

    CAS  PubMed  Google Scholar 

  163. Laurent CP, Vaquette C, Martin C, Guedon E, Wu X, Delconte A, et al. Towards a tissue-engineered ligament: design and preliminary evaluation of a dedicated multi-chamber tension-torsion bioreactor. Processes (Basel). 2014;2:167–79.

    CAS  Google Scholar 

  164. Youngstrom DW, Rajpar I, Kaplan DL, Barrett JG. A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. J Orthop Res. 2015;33:911–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bourdón-Santoyo M, Quiñones-Uriostegui I, Martínez-López V, Sánchez-Arévalo F, Alessi-Montero A, Velasquillo C, et al. Preliminary study of an in vitro development of new tissue applying mechanical stimulation with a bioreactor as an alternative for ligament reconstruction. Rev Invest Clin. 2014;66:S100–10.

    PubMed  Google Scholar 

  166. Burk J, Plenge A, Brehm W, Heller S, Pfeiffer B, Kasper C. Induction of tenogenic differentiation mediated by extracellular tendon matrix and short-term cyclic stretching. Stem Cells Int. 2016;2016:7342379.

    PubMed  PubMed Central  Google Scholar 

  167. Grier WK, Moy AS, Harley BA. Cyclic tensile strain enhances human mesenchymal stem cell Smad 2/3 activation and tenogenic differentiation in anisotropic collagen-glycosaminoglycan scaffolds. Eur Cell Mater. 2017;33:227–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu SH, Yang RS, al-Shaikh R, Lane JM. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res. 1995;318:265–78.

    Google Scholar 

  169. Zhang G, Ezura Y, Chervoneva I, Robinson PS, Beason DP, Carine ET, et al. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem. 2006;98:1436–49.

    CAS  PubMed  Google Scholar 

  170. LaCroix AS, Duenwald-Kuehl SE, Lakes RS, Vanderby R Jr. Relationship between tendon stiffness and failure: a metaanalysis. J Appl Physiol (1985). 2013;115:43–51.

    Google Scholar 

  171. Barber FA, Herbert MA, Coons DA. Tendon augmentation grafts: biomechanical failure loads and failure patterns. Arthroscopy. 2006;22:534–8.

    PubMed  Google Scholar 

  172. Leduc S, Yahia L, Boudreault F, Fernandes JC, Duval N. Mechanical evaluation of a ligament fixation system for ACL reconstruction at the tibia in a canine cadaver model. Ann Chir. 1999;53:735–41.

    CAS  PubMed  Google Scholar 

  173. Schindhelm K, Rogers GJ, Milthorpe BK, Hall PJ, Howlett CR, Sekel R, et al. Autograft and Leeds-Keio reconstructions of the ovine anterior cruciate ligament. Clin Orthop Relat Res. 1991;267:278–93.

    Google Scholar 

  174. Nightingale EJ, Allen CP, Sonnabend DH, Goldberg J, Walsh WR. Mechanical properties of the rotator cuff: response to cyclic loading at varying abduction angles. Knee Surg Sports Traumatol Arthrosc. 2003;11:389–92.

    CAS  PubMed  Google Scholar 

  175. Handl M, Drzík M, Cerulli G, Povýsil C, Chlpík J, Varga F, et al. Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surg Sports Traumatol Arthrosc. 2007;15:233–41.

    PubMed  Google Scholar 

  176. Wren TA, Yerby SA, Beaupré GS, Carter DR. Mechanical properties of the human achilles tendon. Clin Biomech (Bristol, Avon). 2001;16:245–51.

    CAS  Google Scholar 

  177. Gurkan UA, Cheng X, Kishore V, Uquillas JA, Akkus O. Comparison of morphology, orientation, and migration of tendon derived fibroblasts and bone marrow stromal cells on electrochemically aligned collagen constructs. J Biomed Mater Res A. 2010;94:1070–9.

    PubMed  PubMed Central  Google Scholar 

  178. Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, et al. Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng Part A. 2017;23:859–72.

    CAS  PubMed  Google Scholar 

  179. Yoon JP, Lee CH, Jung JW, Lee HJ, Lee YS, Kim JY, et al. Sustained delivery of transforming growth factor β1 by use of absorbable alginate scaffold enhances rotator cuff healing in a rabbit model. Am J Sports Med. 2018;46:1441–50.

    PubMed  Google Scholar 

  180. Sahoo S, Toh SL, Goh JC. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;31:2990–8.

    CAS  PubMed  Google Scholar 

  181. Rothrauff BB, Lauro BB, Yang G, Debski RE, Musahl V, Tuan RS. Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Eng Part A. 2017;23:378–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Leung M, Jana S, Tsao CT, Zhang M. Tenogenic differentiation of human bone marrow stem cells via a combinatory effect of aligned chitosan–poly-caprolactone nanofibers and TGF-β3. J Mater Chem B. 2013;1:6516–24.

    CAS  Google Scholar 

  183. Wu G, Deng X, Song J, Chen F. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. J Photochem Photobiol B. 2018;178:27–32.

    CAS  PubMed  Google Scholar 

  184. Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, Jayakumar R. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym. 2016;153:492–500.

    CAS  PubMed  Google Scholar 

  185. Araque-Monrós MC, Gamboa-Martínez TC, Santos LG, Bernabé SG, Pradas MM, Estellés JM. New concept for a regenerative and resorbable prosthesis for tendon and ligament: physicochemical and biological characterization of PLA-braided biomaterial. J Biomed Mater Res A. 2013;101:3228–37.

    PubMed  Google Scholar 

  186. Leroy A, Nottelet B, Bony C, Pinese C, Charlot B, Garric X, et al. PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation. Biomater Sci. 2015;3:617–26.

    CAS  PubMed  Google Scholar 

  187. Yang G, Lin H, Rothrauff BB, Yu S, Tuan RS. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater. 2016;35:68–76.

    PubMed  PubMed Central  Google Scholar 

  188. Bellini D, Cencetti C, Sacchetta AC, Battista AM, Martinelli A, Mazzucco L, et al. PLA-grafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration. J Mech Behav Biomed Mater. 2016;64:151–60.

    CAS  PubMed  Google Scholar 

  189. Sharifi-Aghdam M, Faridi-Majidi R, Derakhshan MA, Chegeni A, Azami M. Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering. Proc Inst Mech Eng H. 2017;231:652–62.

    PubMed  Google Scholar 

  190. Reese SP, Ellis BJ, Weiss JA. Multiscale modeling of ligaments and tendons. In: Gefen A, editor. Multiscale computer modeling in biomechanics and biomedical engineering. Berlin: Springer; 2013. p. 103–47.

    Google Scholar 

  191. Barfod KW. Acute Achilles tendon rupture: assessment of non-operative treatment. Dan Med J. 2014;61:B4837.

    PubMed  Google Scholar 

  192. Richardson LE, Dudhia J, Clegg PD, Smith R. Stem cells in veterinary medicine—attempts at regenerating equine tendon after injury. Trends Biotechnol. 2007;25:409–16.

    CAS  PubMed  Google Scholar 

  193. Nguyen DT, Dellbrügge S, Tak PP, Woo SL, Blankevoort L, van Dijk NC. Histological characteristics of ligament healing after bio-enhanced repair of the transected goat ACL. J Exp Orthop. 2015;2:4.

    PubMed  PubMed Central  Google Scholar 

  194. Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017;44:170–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Universiti Kebangsaan Malaysia Medical Centre (FF-2017-368) and Universiti Kebangsaan Malaysia (GGPM-2017-050).

Authors’ contributions

All the authors participate in drafting the article and revising it critically for important intellectual content. All the authors give final approval of the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Xian Law.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, W.L., Liau, L.L., Ng, M.H. et al. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng Regen Med 16, 549–571 (2019). https://doi.org/10.1007/s13770-019-00196-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-019-00196-w

Keywords

Navigation