Skip to main content

Advertisement

Log in

Shape Memory Polymer Fibers: Materials, Structures, and Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Shape memory polymer (SMP) is a kind of material that can sense and respond to the changes of the external environment, and its behavior is similar to the intelligent reflection of life. Electrospinning, as a versatile and feasible technique, has been used to prepare shape memory polymer fibers (SMPFs) and expand their structures. SMPFs show some advanced features and functions in many fields. In this review, we give a comprehensive overview of SMPFs, including materials, fabrication methods, structures, multifunction, and applications. Firstly, the mechanism and characteristics of SMP are introduced. We then discuss the electrospinning method to form various microstructures, like non-woven fibers, core/shell fibers, hollow fibers and oriented fibers. Afterward, the multiple functions of SMPFs are discussed, such as multi-shape memory effect, reversible shape memory effect and remote actuation of composites. We also focus on some typical applications of SMPFs, including biomedical scaffolds, drug carriers, self-healing, smart textiles and sensors, as well as energy harvesting devices. At the end, the challenges and future development directions of SMPFs are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Leng JS, Lan X, Liu YJ, et al. Shape memory polymers and their composites: stimulus methods and applications. Prog Mater Sci. 2011;56:1077.

    Article  CAS  Google Scholar 

  2. Zhang FH, Xia YL, Liu YJ, et al. Nano/micro structures of shape memory polymers: from materials to applications. Nanoscale Horizon. 2020;5:1155.

    Article  CAS  Google Scholar 

  3. Zhang FH, Zhao TH, Molina DR, et al. Shape memory polyurethane microcapsules with active deformation. ACS Appl Mater Interfaces. 2020;12:47059.

    Article  CAS  Google Scholar 

  4. Zhang FH, Wang LL, Zheng ZC, et al. Magnetic programming of 4D printed shape memory composite structures. Compos Part A Appl Sci Manuf. 2019;125:105571.

    Article  CAS  Google Scholar 

  5. Sun L, Huang WM, Ding Z, et al. Stimulus-responsive shape memory materials: a review. Mater Des. 2012;33:577.

    Article  CAS  Google Scholar 

  6. Liu YJ, Du HY, Liu LW, et al. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct. 2014;23:023001.

    Article  CAS  Google Scholar 

  7. Sokolowski WM, Tan SC. Advanced self-deployable structures for space applications. J Spacecr Rockets. 2007;44:750.

    Article  Google Scholar 

  8. Khaldi A, Plesse C, Vidal F, et al. Smarter actuator design with complementary and synergetic functions. Adv Mater. 2015;27:4418.

    Article  CAS  Google Scholar 

  9. Hu JL, Meng H, Li GQ, Ibekwe SI. A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct. 2012;21:053001.

    Article  Google Scholar 

  10. Luo XF, Mather PT. Shape memory assisted self-healing coating. ACS Macro Lett. 2013;2:152.

    Article  CAS  Google Scholar 

  11. Lan X, Liu LW, Zhang FH, et al. World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites. Sci China Technol Sci. 2020;63:1436.

    Article  Google Scholar 

  12. Xia YL, He Y, Zhang FH, et al. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv Mater. 2020;33:2000713.

    Article  Google Scholar 

  13. Huang XZ, Zhang FH, Leng JS. Metal mesh embedded in colorless shape memory polyimide for flexible transparent electric-heater and actuators. Appl Mater Today. 2020;21:100797.

    Article  Google Scholar 

  14. Huang XZ, Zhang FH, Liu YJ, et al. Active and deformable organic electronic devices based on conductive shape memory polyimide. ACS Appl Mater Interfaces. 2020;12:23236.

    Article  CAS  Google Scholar 

  15. Li WB, Liu YJ, Leng JS. Programmable and shape-memorizing information carriers. ACS Appl Mater Interfaces. 2017;9:44792.

    Article  CAS  Google Scholar 

  16. Yang G, Li XL, He Y, et al. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci. 2018;81:80.

    Article  CAS  Google Scholar 

  17. Zhao W, Liu LW, Zhang FH, et al. Shape memory polymers and their composites in biomedical applications. Mater Sci Eng. 2019;97:864.

    Article  CAS  Google Scholar 

  18. Zhong Y, Zhang FH, Wang M, et al. Reversible humidity sensitive clothing for personal thermoregulation. Sci Rep. 2017;7:44208.

    Article  Google Scholar 

  19. Gao H, Li JR, Zhang FH, et al. The research status and challenges of shape memory polymer-based flexible electronics. Mater Horizons. 2019;6:931.

    Article  CAS  Google Scholar 

  20. Tan L, Hu JJ, Huang HH, et al. Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int J Biol Macromol. 2015;79:469.

    Article  CAS  Google Scholar 

  21. Wei HQ, Zhang FH, Zhang DW, et al. Shape-memory behaviors of electrospun chitosan/ poly(ethylene oxide) composite nanofibrous membranes. J Appl Polym Sci. 2015;132:42532.

    Article  Google Scholar 

  22. Zhang FH, Zhang ZC, Zhou TY, et al. Shape memory polymer nanofibers and their composites: electrospinning, structure, performance, and applications. Front Mater. 2015;2:62.

    Article  Google Scholar 

  23. Zhang FH, Zhang ZC, Liu YJ, et al. Shape memory properties of electrospun nafion nanofibers. Fibers Polym. 2014;15:534.

    Article  CAS  Google Scholar 

  24. Xue JJ, Wu T, Dai YQ, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.

    Article  CAS  Google Scholar 

  25. Anuja S, Janak S, Johan F, et al. Shape memory composites based on electrospunpoly(vinyl alcohol) fibers and a thermoplastic polyether block amide elastomer. ACS Appl Mater Interfaces. 2016;8:6701.

    Article  Google Scholar 

  26. Yao YT, Wei HQ, Wang JJ, et al. Fabrication of hybrid membrane of electrospun polycaprolactone and polyethylene oxide with shape memory property. Compos Part B Eng. 2015;83:264.

    Article  CAS  Google Scholar 

  27. Yao YT, Xu YC, Wang B, et al. Recent development in electrospun polymer fiber and their composites with shape memory property: a review. Pigm Resin Technol. 2018;47:47.

    Article  CAS  Google Scholar 

  28. Cha DI, Kim HY, Lee KH, et al. Electrospun nonwovens of shape-memory polyurethane block copolymers. J Appl Polym Sci. 2005;96:460.

    Article  CAS  Google Scholar 

  29. Meng QH, Hu JL, Zhu Y, et al. Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Mater Struct. 2007;16:1192.

    Article  CAS  Google Scholar 

  30. Zhang JN, Ma YM, Zhang JJ, et al. Microfiber SMPU film affords quicker shape recovery than the bulk one. Mater Lett. 2011;65:3639.

    Article  CAS  Google Scholar 

  31. Schneider T, Kohl B, Lendleinc A, et al. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Clin Microcirc Hemorheol. 2012;52:325.

    Article  Google Scholar 

  32. Tseng LF, Mather PT, Henderson JH. Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater. 2013;9:8790.

    Article  CAS  Google Scholar 

  33. Squeo EA, Quadrini F. Shape memory epoxy foams by solid-state foaming. Smart Mater Struct.2010;19:105002.

    Article  Google Scholar 

  34. Singhal P, Small W, Cosgriff-Hernandez E, et al. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomater. 2014;10:67.

    Article  CAS  Google Scholar 

  35. Xie T. Tunable polymer multi-shape memory effect. Nature. 2010;464:267.

    Article  CAS  Google Scholar 

  36. Zhang FH, Zhang ZC, Liu YJ, et al. Electrospunnanofiber membranes for electrically activated shape memory nanocomposites. Smart Mater Struct. 2014;23:065020.

    Article  CAS  Google Scholar 

  37. Lin C, Lv JX, Li YS, et al. 4D-Printed biodegradable and remotely controllable shape memory occlusion devices. Adv Funct Mater. 2019;29:1906569.

    Article  CAS  Google Scholar 

  38. Alhazov D, Azra C, Zussman E. Electrospinning-induced shape memory effect in thermoplastic polyurethane characterization and thermo visco elastic modeling. J Polym Sci Part B Polym Phys. 2015;53:1590.

    Article  CAS  Google Scholar 

  39. Meng H, Li G. A review of stimuli-responsive shape memory polymer composites. Polymer. 2013;54:2199.

    Article  CAS  Google Scholar 

  40. Zotzmann J, Behl M, Hofmann D, et al. Reversible triple-shape effect of polymer networks containing polypentadecalactone and poly(epsilon-caprolactone)-segments. Adv Mater. 2010;22:3424.

    Article  CAS  Google Scholar 

  41. Chen SJ, Mo F, Yang Y, et al. Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J Mater Chem A. 2015;3:2924.

    Article  CAS  Google Scholar 

  42. Ban JF, Mo F, Pan LL, et al. Liquid crystalline polyurethane composites based on supramolecular structure with reversible bidirectional shape memory and multi-shape memory effects. New J Chem. 2019;43:103.

    Article  Google Scholar 

  43. Wang KJ, Si H, Wan Q, et al. Luminescent two-way reversible shape memory polymers prepared by hydroxyl–yne click polymerization. J Mater Chem C. 2020;8:16121.

    Article  CAS  Google Scholar 

  44. Dong YB, Zhu YF, Chen SJ, et al. Epoxy system with two-way shape memory effect under isostress condition. Polym Adv Technol. 2018;29:3181.

    Article  CAS  Google Scholar 

  45. Behl M, Kratz K, Zotzmann J, Nöchel U, et al. Reversible bidirectional shape-memory polymers. Adv Mater. 2013;25:4466.

    Article  CAS  Google Scholar 

  46. Wu Y, Hu J, Han J, et al. Two-way shape memory polymer with “switch spring” composition by interpenetrating polymer network. J Mater Chem A. 2014;2:18816.

    Article  CAS  Google Scholar 

  47. Zhao Q, Qi HJ, Xie T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci. 2015;49:79.

    Article  Google Scholar 

  48. Gu XZ, Mather PT. Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs). RSC Adv. 2013;3:15783.

    Article  CAS  Google Scholar 

  49. Liu YT, Huang JR, Zhou JD, et al. Influence of selective distribution of SiO2 nanoparticles on shape memory behavior of co-continuous PLA/NR/SiO2 TPVs. Mater Chem Phys. 2020;242:122538.

    Article  CAS  Google Scholar 

  50. Zhang BA, Zhang W, Zhang ZQ, et al. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Appl Mater Interfaces. 2019;11:10328.

    Article  CAS  Google Scholar 

  51. Wang L, Yang X, Chen H, et al. Design of triple-shape memory polyurethane with photo-crosslinking of cinnamon groups. ACS Appl Mater Interfaces. 2013;5:10520.

    Article  CAS  Google Scholar 

  52. Hong SI, Youk JH, Yu WR. Manufacture and properties of shape memory polyurethane fibers. Textile Sci Eng. 2010;47:85.

    CAS  Google Scholar 

  53. Gu JP, Sun HY, Zeng H, et al. Modeling the thermomechanical behavior of carbon fiber-reinforced shape memory polymer composites under the finite deformation. J Intell Mater Syst Struct. 2020;31:503.

    Article  CAS  Google Scholar 

  54. Jiang SH, Liu FY, Lerch A, et al. Unusual and superfast temperature-triggered actuators. Adv Mater. 2015;27:4865.

    Article  CAS  Google Scholar 

  55. Luo CJ, Stoyanov SD, Stride E, et al. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev. 2012;41:4708.

    Article  CAS  Google Scholar 

  56. Jian S, Zhu J, Jiang S, et al. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv. 2018;8:4794.

    Article  CAS  Google Scholar 

  57. Dai H, Gong J, Kim H, et al. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology. 2002;13:674.

    Article  CAS  Google Scholar 

  58. Kuang WB, Mather PT. A latent crosslinkable PCL-based polyurethane: synthesis, shape memory, and enzymatic degradation. J Mater Res. 2018;33:2463.

    Article  CAS  Google Scholar 

  59. Barmouz M, Behravesh AH. The role of foaming process on shape memory behavior of polylactic acid-thermoplastic polyurethane-nano cellulose bio-nanocomposites. J Mech Behav Biomed Mater. 2019;91:266.

    Article  CAS  Google Scholar 

  60. Nji J, Li GQ. Damage healing ability of a shape-memory-polymer-based particulate composite with small thermoplastic contents. Smart Mater Struct. 2012;21:025011.

    Article  Google Scholar 

  61. Xue JJ, Xie JW, Liu WY, et al. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 2017;50:1976.

    Article  CAS  Google Scholar 

  62. Zhang FH, Zhang ZC, Cheng WL, et al. Thermosetting epoxy reinforced shape memory composite microfiber membranes: fabrication, structure and properties. Compos Part A Appl Sci Manuf. 2015;76:54.

    Article  CAS  Google Scholar 

  63. Wu JL, Hong Y. Enhancing cell infiltration of electrospunfibrous scaffolds in tissue regeneration. Bioactive Mater. 2016;1:56.

    Article  Google Scholar 

  64. Zhang ZC, Zhang FH, Liu YJ, et al. Electrospinning and microwave absorption of polyaniline/polyacrylonitrile/multiwalled carbon nanotubes nanocomposite fibers. Fibers Polym. 2014;15:2290.

    Article  CAS  Google Scholar 

  65. Merlettini A, Pandini S, Agnelli S, et al. Facile fabrication of shape memory poly(epsilon-caprolactone) non-woven mat by combining electrospinning and sol-gel reaction. RSC Adv. 2016;6:43964.

    Article  CAS  Google Scholar 

  66. Yuan L, Loh CH, Miao T, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog Polym Sci. 2018;77:69.

    Article  Google Scholar 

  67. Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11:1165.

    Article  CAS  Google Scholar 

  68. Yang GZ, Li HP, Yang JH, et al. Influence of working temperature on the formation of electrospun polymer nanofibers. Nanoscale Res Lett. 2017;12:55.

    Article  Google Scholar 

  69. Geltmeyer J, De Roo J, Van den Broeck F, et al. The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers. J Sol Gel Sci Technol. 2016;77:453.

    Article  CAS  Google Scholar 

  70. Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151.

    Article  CAS  Google Scholar 

  71. Shin YM, Brenner MP, Rutledge GC, et al. Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett. 2001;78:1149.

    Article  CAS  Google Scholar 

  72. Deitzel JM, Kleinmeyer J, Beck NC, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261.

    Article  CAS  Google Scholar 

  73. Yao YT, Wang JJ, Lu HB, et al. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater Struct. 2016;25:015021.

    Article  Google Scholar 

  74. Bao M, Lou XX, Zhou QH, et al. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces. 2014;6:2611.

    Article  CAS  Google Scholar 

  75. Zhuo HT, Hu JL, Chen SJ, et al. Study of the thermal properties of shape memory polyurethane nanofibrous nonwoven. J Mater Sci. 2011;46:3464.

    Article  CAS  Google Scholar 

  76. Dan K, Molamma PP, Xian JL, et al. Elastic poly(epsilon-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed Mater. 2016;11:015007.

    Article  Google Scholar 

  77. Zhuo HT, Hu JL, Chen SJ, et al. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Express Polym Lett. 2011;5:182.

    Article  CAS  Google Scholar 

  78. Rana S, Cho JW. Core-sheath polyurethane-carbon nanotube nanofibers prepared by electrospinning. Fibers Polym. 2011;12:721.

    Article  CAS  Google Scholar 

  79. Zhang QC, Kratza K, Lendleina A, et al. Shape-memory properties of degradable electrospun scaffolds based on hollow microfibers. Polym Adv Technol. 2015;26:1468.

    Article  CAS  Google Scholar 

  80. Gong T, Li WB, Chen HM, et al. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012;8:1248.

    Article  CAS  Google Scholar 

  81. He ZW, Nitin S, Xie T, et al. Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv Mater. 2011;23:3192.

    Article  CAS  Google Scholar 

  82. Tan L, Gan L, Hu JL, et al. Functional shape memory composite nanofibers with graphene oxide filler. Compos Part A. 2015;76:115.

    Article  CAS  Google Scholar 

  83. Zhang FH, Zhang ZC, Luo CJ. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields. J Mater Chem C. 2015;3:11290.

    Article  CAS  Google Scholar 

  84. Ji FL, Zhu Y, Hu JL, et al. Smart polymer fibers with shape memory effect. Smart Mater Struct. 2006;15:1547.

    Article  CAS  Google Scholar 

  85. Rodriguez ED, Weed DC, Mather PT. Anisotropic shape-memory elastomeric composites: fabrication and testing. Macromol Chem Phys. 2013;214:1247.

    Article  CAS  Google Scholar 

  86. Nejad HB, Robertson JM, Mather PT. Interwoven polymer composites via dual-electrospinning with shape memory and self-healing properties. MRS Commun. 2015;5:211.

    Article  Google Scholar 

  87. Tumbic J, Romo-Uribe A, Boden M, et al. Hot-compacted interwoven webs of biodegradable polymers. Polymer. 2016;101:127.

    Article  CAS  Google Scholar 

  88. Li JF, Sun JX, Huang WT, et al. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity. Adv Fiber Mater. 2019;1:71.

    Article  Google Scholar 

  89. Zhang FH, Zhang ZC, Liu YJ, et al. The quintuple-shape memory effect in electrospun nanofiber membranes. Smart Mater Struct. 2013;22:085020.

    Article  CAS  Google Scholar 

  90. Sabzi M, Ranjbar-Mohammadi M, Zhang QW, et al. Designing triple-shape memory polymers from a miscible polymer pair through dual-electrospinning technique. J Appl Polym Sci. 2019;136:47471.

    Article  Google Scholar 

  91. Chen HL, Cao XY, Zhang JN, et al. Electrospun shape memory film with reversible fibrous structure. J Mater Chem. 2012;22:22387.

    Article  CAS  Google Scholar 

  92. Zhang QC, Rudolph T, Benitez AJ, et al. Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes. Smart Mater Struct. 2019;28:055037.

    Article  CAS  Google Scholar 

  93. Leonés A, Sonseca A, López D, et al. Shape memory effect on electrospun PLA-based fibers tailoring their thermal response. Eur Polym J. 2019;117:217.

    Article  Google Scholar 

  94. Chen WM, Xu Y, Liu YQ, et al. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des. 2019;179:107886.

    Article  CAS  Google Scholar 

  95. Zhang FH, Xia YL, Wang LL, et al. Conductive shape memory microfiber membranes with core-shell structures and electroactive performance. ACS Appl Mater Interface. 2018;10:35526.

    Article  CAS  Google Scholar 

  96. Zhou Y, Wang XL, Yi BC, et al. Engineering shape memory enabled composite nanofibers for bone tissue engineering. Chem J Chin Univ Chin. 2018;39:1554.

    CAS  Google Scholar 

  97. Kai D, Prabhakaran MP, Yu Chan BQ, et al. Elastic poly(epsilon-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed Mater. 2016;11:015007.

    Article  Google Scholar 

  98. Bao M, Wang XL, Yuan HH, et al. HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. J Mater Chem B Mater Biol Med. 2016;4:5308.

    Article  CAS  Google Scholar 

  99. Zhao JW, Cui WG. Functional electrospun fibers for local therapy of cancer. Adv Fiber Mater. 2020;2:229.

    Article  CAS  Google Scholar 

  100. Dong YP, Zheng YQ, Zhang KY, et al. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater. 2020;2:212.

    Article  CAS  Google Scholar 

  101. Lv HT, Tang DY, Sun ZS, et al. Electrospun PCL-based polyurethane/HA microfibers as drug carrier of dexamethasone with enhanced biodegradability and shape memory performances. Colloid Polym Sci. 2020;298:103.

    Article  CAS  Google Scholar 

  102. Niiyama E, Tanabe K, Uto K, et al. Shape-memory nanofiber meshes with programmable cell orientation. Fibers. 2019;7:20.

    Article  CAS  Google Scholar 

  103. Pandini S, Agnelli S, Merlettini A, et al. Mutifunctional electrospun nonwoven mats with two-way shape memory behavior prepared from sol-gel crosslinked poly(epsilon-caprolactone). Macromol Mater Eng. 2017;302:1600519.

    Article  Google Scholar 

  104. Wang XL, Yan HY, Shen YB, et al. Shape memory and osteogenesis capabilities of the electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) modified poly(l-lactide) fibrous mats. Tissue Eng Part A. 2020;27:142.

    Article  Google Scholar 

  105. Shojaei A, Li GQ, Voyiadjis GZ. Cyclic viscoplastic-viscodamage analysis of shape memory polymers fibers with application to self-healing smart materials. J Appl Mech. 2013;80:011014.

    Article  Google Scholar 

  106. Li GQ, Shojaei A. A viscoplastic theory of shape memory polymer fibers with application to self-healing materials. Proc Math Phys Eng Sci. 2012;468:2319.

    CAS  Google Scholar 

  107. Li GQ, Zhang PF. A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. Polymer. 2013;54:5075.

    Article  CAS  Google Scholar 

  108. Li GQ, Ajisafe O, Meng H. Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer. 2013;54:920.

    Article  CAS  Google Scholar 

  109. Zhang PF, Ogunmekan B, Ibekwe S, et al. Healing of shape memory polyurethane fiber-reinforced syntactic foam subjected to tensile stress. J Intell Mater Syst Struct. 2016;27:1792.

    Article  Google Scholar 

  110. Nejad BH, Garrison KL, Mather PT. Comparative analysis of shape memory-based self-healing coatings. J Polym Sci Part B Polym Phys. 2016;54:1415.

    Article  Google Scholar 

  111. Huang T, Zhu Y, Zhu J, et al. Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv Fiber Mater. 2020;2:338.

    Article  CAS  Google Scholar 

  112. Guan XY, Chen HR, Xia H, et al. Multifunctional composite nanofibers with shape memory and piezoelectric properties for energy harvesting. J Intell Mater Syst Struct. 2020;31:956.

    Article  CAS  Google Scholar 

  113. Khalili N, Asif H, Naguib HE. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties. Smart Mater Struct. 2018;27:055002.

    Article  Google Scholar 

  114. Gök MO, Bilir MZ, Gürcüm BH. Shape memory applications in textile design. Proc Soc Behav Sci. 2015;195:2160.

    Article  Google Scholar 

  115. Enomoto M, Suehiro K, Muraoka Y, et al. Physical properties of polyurethane blend dope-coated fabrics. Text Res J. 1997;67:601.

    Article  CAS  Google Scholar 

  116. Torbati AH, Mather RT, Reeder JE, et al. Fabrication of a light-emitting shape memory polymeric web containing indocyanine green. J Biomed Mater Res Part B Appl Biomater. 2014;102:1236.

    Article  Google Scholar 

  117. Loke G, Alain J, Yan W, et al. Computing fabrics. Matter. 2020;2:786.

    Article  Google Scholar 

  118. Yan W, Richard I, Kurtuldu G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol. 2020;15:875.

    Article  CAS  Google Scholar 

  119. Loke G, Yan W, Khudiyev T, et al. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater. 2020;32:1904911.

    Article  CAS  Google Scholar 

  120. Yan W, Dong CQ, Xiang YZ, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today. 2020;35:168.

    Article  CAS  Google Scholar 

  121. Dong CQ, Page AG, Yan W, et al. Microstructured multimaterial fibers for microfluidic sensing. Adv Mater Technol. 2019;4:1900417.

    Article  CAS  Google Scholar 

  122. Dong CQ, Leber A, Gupta TD, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun. 2020;11:1.

    Article  CAS  Google Scholar 

  123. Yan W, Page A, Nguyen-Dang T, et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater. 2019;31:1802348.

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Grant No. 11632005, 11802075). This work was also supported by the China Postdoctoral Science Foundation funded project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenghua Zhang or Jinsong Leng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, F., Liu, Y. et al. Shape Memory Polymer Fibers: Materials, Structures, and Applications. Adv. Fiber Mater. 4, 5–23 (2022). https://doi.org/10.1007/s42765-021-00073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00073-z

Keywords

Navigation