Skip to main content
Log in

Interfacial Behaviors of Basalt Fiber-Reinforced Polymeric Composites: A Short Review

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Basalt fibers (BFs) have emerged as a promising thermal insulation material for various applications, such as fireproof clothes/walls and protective equipment in military and civil engineering. BFs have many desirable characteristics, such as low thermal conductivity, excellent flame resistance, exceptional mechanical strength, facile manipulability, environmental friendliness, and cost-effectiveness. Nevertheless, the low intrinsic interfacial properties of BFs due to their chemical inertness and macro-scaled sizes have been a challenge for high performance of BFs-reinforced polymeric composites (BFRPs). Since the mechanical properties of BFRPs significantly depend on the interfacial interaction between the fibers and the matrix, it is critical to understand how incorporating BFs influences the properties of the composites. To this end, the aim of this review is to report on recent research progress with emphasis on the interfacial behavior in BFRPs. The relationships between the fiber–matrix interfacial adhesion and the mechanical properties of the BFRPs are briefly described with systematic and up-to-date surface modification techniques summarized into two categories: surface modifications (“wet” and “dry”) and multi-scaled structures. Finally, several strategies for increasing the interfacial adhesion of BFs within the polymeric matrix to provide new ideas and insight for future research on the BFRPs are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from ref [42], Copyright 1983, Taylor & Francis

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ajayan PM, Tour JM. Materials science - nanotube composites. Nature 2007;447:1066.

    Article  CAS  Google Scholar 

  2. Shuvo II, Hoque MS, Shadhin M, Khandakar LKM. Flexural strength and load-deflection behaviour of hybrid thermoset composites of wood and canola biopolymers. Adv Fiber Mater 2021;3:331.

    Article  CAS  Google Scholar 

  3. Robertson ID, Yourdkhani M, Centellas PJ, Aw JE, Ivanoff DG, Goli E, Lloyd EM, Dean LM, Sottos NR, Geubelle PH, Moore JS, White SR. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 2018;557:223.

    Article  CAS  Google Scholar 

  4. Khan FM, Shah AH, Wang S, Mehmood S, Wang J, Liu WB, Xu XD. A comprehensive review on epoxy biocomposites based on natural fibers and bio-fillers: challenges, recent developments and applications. Adv Fiber Mater 2022;4:683.

    Article  CAS  Google Scholar 

  5. Jia C, Xu Z, Luo DF, Xiang HX, Zhu MF. Flexible ceramic fibers: recent development in preparation and application. Adv Fiber Mater 2022;4:573.

    Article  CAS  Google Scholar 

  6. Sim J, Park C, Moon DY. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos Part B-Eng 2005;36:504.

    Article  Google Scholar 

  7. Czigany T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol 2006;66:3210.

    Article  CAS  Google Scholar 

  8. Balaji KV, Shirvanimoghaddam K, Rajan GS, Ellis AV, Naebe M. Surface treatment of Basalt fiber for use in automotive composites. Mater Today Chem 2020;17:100334.

    Article  Google Scholar 

  9. Deak T, Czigany T. Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Text Res J 2009;79:645.

    Article  CAS  Google Scholar 

  10. Czigány T. Discontinuous basalt fiber-reinforced hybrid composites. In: Polymer composites. Springer; 2005. p. 309.

    Chapter  Google Scholar 

  11. Liu Z, Fan XL, Cheng L, Zhang JL, Tang L, Tang YS, Kong J, Gu JW. Hybrid polymer membrane functionalized pbo fibers/cyanate esters wave-transparent laminated composites. Adv Fiber Mater 2022;4:520.

    Article  CAS  Google Scholar 

  12. Guo ZS, Xing D, Xi XY, Yue X, Liang CG, Hao B, Zheng QB, Gutnikov SI, Lazoryak BI, Ma PC. Production of fibres from lunar soil: feasibility, applicability and future perspectives. Adv Fiber Mater 2022. https://doi.org/10.1007/s42765-022-00156-5 .

    Article  Google Scholar 

  13. Yu J, Cui ZL, Lu JY, Zhao JL, Zhang Y, Fan GQ, Liu SY, He YB, Yu YH, Qi DM. Integrated hierarchical macrostructures of flexible basalt fiber composites with tunable electromagnetic interference (EMI) shielding and rapid electrothermal response. Compos Part B-Eng 2021;224:109193.

    Article  CAS  Google Scholar 

  14. Khan M, Cao ML, Hussain A, Chu SH. Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix interface in cement-based composites. Constr Build Mater 2021;300:124046.

    Article  CAS  Google Scholar 

  15. Tian HX, Fan W, Ge SB, Xia CL, Liu Y, Wang HH, Wang SJ. Nanofiber-sheathed structure for enhancing interfacial properties of basalt fiber-reinforced composites. Compos Commun 2021;23:100589.

    Article  Google Scholar 

  16. Pak S, Park S, Song YS, Lee D. Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites. Compos Struct 2018;193:73.

    Article  Google Scholar 

  17. Bahari-Sambran F, Meuchelboeck J, Kazemi-Khasragh E, Eslami-Farsani R, Chirani SA. The effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates. Thin-Walled Struct 2019;144:106343.

    Article  Google Scholar 

  18. Kim Y-H, Park J-M, Yoon S-W, Lee J-W, Jung M-K, Murakami R-I. The effect of moisture absorption and gel-coating process on the mechanical properties of the basalt fiber reinforced composite. Int J Ocean Syst Eng 2011;1:148.

    Article  Google Scholar 

  19. Afroz M, Patnaikuni I, Venkatesan S. Chemical durability and performance of modified basalt fiber in concrete medium. Constr Build Mater 2017;154:191.

    Article  CAS  Google Scholar 

  20. Nair GR, Rho D, Raghavan GV. Application of electro-technologies in processing of flax fiber. Fibers 2013;1:21.

    Article  Google Scholar 

  21. More AP. Flax fiber–based polymer composites: a review. Adv Compos Hybrid Mater 2021;5:1.

    Article  Google Scholar 

  22. Gupta M, Srivastava R, Bisaria H. Potential of jute fibre reinforced polymer composites: a review. Int J Fiber Text Res 2015;5:30.

    Google Scholar 

  23. Ashraf MA, Zwawi M, Taqi Mehran M, Kanthasamy R, Bahadar A. Jute based bio and hybrid composites and their applications. Fibers 2019;7:77.

    Article  CAS  Google Scholar 

  24. Sathishkumar T, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites–a review. J Reinf Plast Compos 2014;33:1258.

    Article  CAS  Google Scholar 

  25. Rani M, Choudhary P, Krishnan V, Zafar S. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos B Eng 2021;215:108768.

    Article  CAS  Google Scholar 

  26. Gao G, Zhang Z, Li X, Meng Q, Zheng Y. An excellent ablative composite based on PBO reinforced EPDM. Polym Bull 2010;64:607.

    Article  CAS  Google Scholar 

  27. Wang GJ, Liu YW, Guo YJ, Zhang ZX, Xu MX, Yang ZX. Surface modification and characterizations of basalt fibers with non-thermal plasma. Surf Coat Technol 2007;201:6565.

    Article  CAS  Google Scholar 

  28. Kim SH, Heo YJ, Park M, Min BG, Rhee KY, Park SJ. Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites. Compos Part B-Eng 2018;153:9.

    Article  CAS  Google Scholar 

  29. Kim SH, Heo YJ, Park SJ. Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites. Steel Compos Struct 2019;31:517.

    Google Scholar 

  30. Lee SO, Choi SH, Kwon SH, Rhee KY, Park SJ. Modification of surface functionality of multi-walled carbon nanotubes on fracture toughness of basalt fiber-reinforced composites. Compos Part B-Eng 2015;79:47.

    Article  CAS  Google Scholar 

  31. Dowling DP, Abourayana HM, Brantseva T, Antonov A, Dobbyn PJ. Enhancing the mechanical performance of 3D-printed basalt fiber-reinforced composites using in-line atmospheric plasma pretreatments. Plasma Process Polym 2020;17:1900143.

    Article  CAS  Google Scholar 

  32. Kim SH, Park SM, Park SJ. Role of dry ozonization of basalt fibers on interfacial properties and fracture toughness of epoxy matrix composites. Nanotechnol Rev 2021;10:710.

    Article  CAS  Google Scholar 

  33. Kim SH, Park SJ. Effect of graphene oxide/graphitic nanofiber nanohybrids on interfacial properties and fracture toughness of carbon fibers-reinforced epoxy matrix composites. Compos Part B-Eng 2021;227:109387.

    Article  CAS  Google Scholar 

  34. Militky J, Kovacic V, Rubnerova J. Influence of thermal treatment on tensile failure of basalt fibers. Eng Fract Mech 2002;69:1025.

    Article  Google Scholar 

  35. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B-Eng 2011;42:856.

    Article  Google Scholar 

  36. Samper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM. Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polym Compos 2015;36:1205.

    Article  CAS  Google Scholar 

  37. Hou XL, Yao S, Wang Z, Fang CQ, Li TH. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface. J Mater Sci Technol 2021;84:182.

    Article  CAS  Google Scholar 

  38. Dhand V, Mittal G, Rhee KY, Park SJ, Hui D. A short review on basalt fiber reinforced polymer composites. Compos Part B-Eng 2015;73:166.

    Article  CAS  Google Scholar 

  39. Hao B, Forster T, Mader E, Ma PC. Modification of basalt fibre using pyrolytic carbon coating for sensing applications. Compos Part a-Appl Sci Manuf 2017;101:123.

    Article  CAS  Google Scholar 

  40. Zhou SF, Wang JJ, Wang SZ, Ma XZ, Huang J, Zhao GZ, Liu YQ. Facile preparation of multiscale graphene-basalt fiber reinforcements and their enhanced mechanical and tribological properties for polyamide 6 composites. Mater Chem Phys 2018;217:315.

    Article  CAS  Google Scholar 

  41. Yu S, Oh KH, Hong SH. Enhancement of the mechanical properties of basalt fiber-reinforced polyamide 6,6 composites by improving interfacial bonding strength through plasma-polymerization. Compos Sci Technol 2019;182:107756.

    Article  CAS  Google Scholar 

  42. Drzal LT, Rich MJ, Lloyd PF. Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment. J Adhes 1983;16:1.

    Article  CAS  Google Scholar 

  43. Aghamohammadi H, Abbandanak SNH, Eslami-Farsani R, Siadati SMH. Effects of various aluminum surface treatments on the basalt fiber metal laminates interlaminar adhesion. Int J Adhes Adhes 2018;84:184.

    Article  CAS  Google Scholar 

  44. Amuthakkannan P, Manikandan V, Jappes JW, Uthayakumar M. Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Mater Phys Mech 2013;16:107.

    CAS  Google Scholar 

  45. Zivkovic I, Fragassa C, Pavlovic A, Brugo T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos Part B-Eng 2017;111:148.

    Article  CAS  Google Scholar 

  46. Plappert D, Ganzenmuller GC, May M, Beisel S. Mechanical properties of a unidirectional basalt-fiber/epoxy composite. J Compos Sci 2020;4:101.

    Article  CAS  Google Scholar 

  47. Cerny M, Glogar P, Sucharda Z. Mechanical properties of basalt fiber reinforced composites prepared by partial pyrolysis of a polymer precursor. J Compos Mater 2009;43:1109.

    Article  CAS  Google Scholar 

  48. Lee JW, Yu T, Park SJ, Kim YH. Interfacial properties of aramid/basalt fiber reinforced hybrid composites by addition of halloysite nanotube. Mod Phys Lett B 2019;33:1940031.

    Article  Google Scholar 

  49. Wu Q, Zhao RY, Zhu JF, Wang F. Interfacial improvement of carbon fiber reinforced epoxy composites by tuning the content of curing agent in sizing agent. Appl Surf Sci 2020;504:144384.

    Article  CAS  Google Scholar 

  50. Matykiewicz D, Barczewski M, Knapski D, Skorczewska K. Hybrid effects of basalt fibers and basalt powder on thermomechanical properties of epoxy composites. Compos Part B-Eng 2017;125:157.

    Article  CAS  Google Scholar 

  51. Kim SH, Rhee KY, Park SJ. Amine-terminated chain-grafted nanodiamond/epoxy nanocomposites as interfacial materials: thermal conductivity and fracture resistance. Compos Part B-Eng 2020;192:107983.

    Article  CAS  Google Scholar 

  52. Ma LY, Nie Y, Liu YR, Huo F, Bai L, Li Q, Zhang SJ. Preparation of core/shell electrically conductive fibers by efficient coating carbon nanotubes on polyester. Adv Fiber Mater 2021;3:180.

    Article  CAS  Google Scholar 

  53. Ozturk B, Arslan F, Ozturk S. Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials. Tribol Int 2007;40:37.

    Article  Google Scholar 

  54. Hayward MR, Johnston JH, Dougherty T, De Silva K. Interfacial adhesion: improving the mechanical properties of silicon nitride fibre-epoxy polymer composites. Compos Interfaces 2019;26:263.

    Article  CAS  Google Scholar 

  55. Sun YH, Deng KL, Zhan YL, Huang WF, Yin C. Interfacial behavior of segmental concrete-filled Basalt FRP tube under cyclic loading. Steel Compos Struct 2021;40:65.

    Google Scholar 

  56. Jia H, Liu C, Qiao Y, Zhang Y, Dang XX, Chen YS, Jian XG. Enhanced interfacial and mechanical properties of basalt fiber reinforced poly(aryl ether nitrile ketone) composites by amino-silane coupling agents. Polymer 2021;230:124028.

    Article  CAS  Google Scholar 

  57. Vinay SS, Sanjay MR, Siengchin S, Venkatesh CV. Basalt fiber reinforced polymer composites filled with nano fillers: a short review. Mater Today-Proc 2022;52:2460.

    Article  CAS  Google Scholar 

  58. Zhao X, Wang X, Wu ZS, Wu J. Experimental study on effect of resin matrix in basalt fiber reinforced polymer composites under static and fatigue loading. Constr Build Mater 2020;242:118121.

    Article  CAS  Google Scholar 

  59. Mazur K, Jakubowska P, Romanska P, Kuciel S. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. Compos Part B-Eng 2020;202:108399.

    Article  CAS  Google Scholar 

  60. Manikandan V, Jappes JTW, Kumar SMS, Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos Part B-Eng 2012;43:812.

    Article  CAS  Google Scholar 

  61. Chen ZW, Huang YD. Preparation and performance of fumed silica-stabilized epoxy resin pickering emulsion for basalt fiber-sizing agents. Adv Compos Hybrid Mater 2021;4:1205.

    Article  CAS  Google Scholar 

  62. Jancar J. Effect of interfacial shear strength on the mechanical response of polycarbonate and PP reinforced with basalt fibers. Compos Interfaces 2006;13:853.

    Article  CAS  Google Scholar 

  63. Kim S-H, Park S-J. Interfacial interaction of graphitic carbon nitride/nanodiamond nanocomposites toward synergistic enhancement of photocatalytic degradation of organic contaminants. J Colloid Interface Sci 2022;608:2257.

    Article  CAS  Google Scholar 

  64. Lu GJ, Wang WH, Shen SJ. Mechanical properties of wood flour reinforced high density polyethylene composites with basalt fibers. Mater Sci-Medzg 2014;20:464.

    Google Scholar 

  65. Mengal AN, Karuppanan S. Influence of angle ply orientation on the flexural strength of basalt and carbon fiber reinforced hybrid composites. Compos Res 2015;28:1.

    Article  Google Scholar 

  66. Wang SL, Yao YH, Tang CH, Li GY, Cui JJ. Mechanical characteristics, constitutive models and fracture behaviors of short basalt fiber reinforced thermoplastic composites under varying strain rates. Comp Part B-Eng 2021;218:108933.

    Article  CAS  Google Scholar 

  67. Cui SA, Xu XF, Yan XJ, Chen Z, Hu CY, Liu ZL. Experimental study on the interfacial bond between short cut basalt fiber bundles and cement matrix. Constr Build Mater 2020;256:119353.

    Article  CAS  Google Scholar 

  68. Kim MS, Park SJ. Influence of fiber array direction on mechanical interfacial properties of basalt fiber-reinforced composites. Polymer-Korea 2015;39:219.

    Article  CAS  Google Scholar 

  69. Kuzmin KL, Timoshkin IA, Gutnikov SI, Zhukovskaya ES, Lipatov YV, Lazoryak BI. Effect of silane/nano-silica on the mechanical properties of basalt fiber reinforced epoxy composites. Compos Interfaces 2016;24:13.

    Article  Google Scholar 

  70. Xu JL, Fan JL, Kang CH, Niu L, Ju CY. Study on mechanical properties of nano-Sb2O3/BEO-PBT flame retardant composites reinforced by surface-modified basalt fiber. J Adhes Sci Technol 2021;36:1458.

    Article  Google Scholar 

  71. Lilli M, Zvonek M, Cech V, Scheffler C, Tirillo J, Sarasini F. Low temperature plasma polymerization: an effective process to enhance the basalt fibre/matrix interfacial adhesion. Compos Commun 2021;27:100769.

    Article  Google Scholar 

  72. Li C, Wang HY, Zhao XL, Fu YD, He XD, Song YG. Investigation of mechanical properties for basalt fiber/epoxy resin composites modified with La. Coatings 2021;11:666.

    Article  CAS  Google Scholar 

  73. Wei B, Cao HL, Song SH. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater Des 2010;31:4244.

    Article  CAS  Google Scholar 

  74. Lund MD, Yue YZ. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers. J Non-Cryst Solids 2008;354:1151.

    Article  CAS  Google Scholar 

  75. Gao SL, Mader E, Plonka R. Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion. Compos Sci Technol 2008;68:2892.

    Article  CAS  Google Scholar 

  76. Lee SO, Rhee KY, Park SJ. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites. J Ind Eng Chem 2015;32:153.

    Article  CAS  Google Scholar 

  77. Xie YJ, Hill CAS, Xiao ZF, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part a-Appl Sci Manuf 2010;41:806.

    Article  Google Scholar 

  78. Alao PF, Marrot L, Burnard MD, Lavric G, Saarna M, Kers J. Impact of alkali and silane treatment on hemp/PLA composites’ performance: from micro to macro scale. Polymers 2021;13:851.

    Article  CAS  Google Scholar 

  79. Arslan C, Dogan M. The effects of fiber silane modification on the mechanical performance of chopped basalt fiber/ABS composites. J Thermoplast Compos Mater 2020;33:1449.

    Article  CAS  Google Scholar 

  80. Xiang Y, Xie YJ, Long GC. Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: from macro-mechanical performance to micro-interfacial mechanism. Constr Build Mater 2018;179:107.

    Article  CAS  Google Scholar 

  81. Arslan C, Dogan M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites. Compos Part B-Eng 2018;146:145.

    Article  CAS  Google Scholar 

  82. Yu S, Oh KH, Hwang JY, Hong SH. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6,6 composites. Compos Part B-Eng 2019;163:511.

    Article  CAS  Google Scholar 

  83. Ying ZR, Wu DF, Zhang M, Qiu YX. Polylactide/basalt fiber composites with tailorable mechanical properties: effect of surface treatment of fibers and annealing. Compos Struct 2017;176:1020.

    Article  Google Scholar 

  84. Sang L, Zhao MY, Liang QS, Wei ZY. Silane-treated basalt fiber-reinforced poly(butylene succinate) biocomposites: interfacial crystallization and tensile properties. Polymers 2017;9:351.

    Article  Google Scholar 

  85. Mittal G, Rhee KY. Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites. Compos Sci Technol 2018;165:84.

    Article  CAS  Google Scholar 

  86. Wang JJ, Zhou SF, Huang J, Zhao GZ, Liu YQ. Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties. RSC Adv 2018;8:12222.

    Article  CAS  Google Scholar 

  87. Mittal G, Nesovic K, Rhee KY, Miskovic-Stankovic V. Investigation of corrosion behaviour of carbon nanotubes coated basalt fabric as a reinforcement material. Compos Part B-Eng 2019;178:107493.

    Article  CAS  Google Scholar 

  88. Kim M, Lee TW, Park SM, Jeong YG. Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers. Compos Part a-Appl Sci Manuf 2019;123:123.

    Article  CAS  Google Scholar 

  89. Sarasini F, Tirillo J, Sergi C, Seghini MC, Cozzarini L, Graupner N. Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites. Compos Struct 2018;188:394.

    Article  Google Scholar 

  90. Wei B, Cao HL, Song SH. Surface modification and characterization of basalt fibers with hybrid sizings. Compos Part a-Appl Sci Manuf 2011;42:22.

    Article  Google Scholar 

  91. Lou KK, Kang AH, Xiao P, Wu ZG, Li B, Wang XY. Effects of basalt fiber coated with different sizing agents on performance and microstructures of asphalt mixture. Constr Build Mater 2021;266:121155.

    Article  CAS  Google Scholar 

  92. Wei B, Song SH, Cao HL. Strengthening of basalt fibers with nano-SiO2-epoxy composite coating. Mater Des 2011;32:4180.

    Article  CAS  Google Scholar 

  93. Wang ZT, Luo HJ, Zhang J, Chen HW, Zhang L, Wu LL, Jiang H. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber. Mater Chem Phys 2021;272:125024.

    Article  CAS  Google Scholar 

  94. Wang ZT, Luo HJ, Zhang L, Zhang J, Chen HW, Jiang H. Mechanical properties of basalt fiber improved by starch phosphates sizing agent. Appl Surf Sci 2020;521:146196.

    Article  CAS  Google Scholar 

  95. Ralph C, Lemoine P, Boyd A, Archer E, McIlhagger A. The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene. Appl Surf Sci 2019;475:435.

    Article  CAS  Google Scholar 

  96. Sorrentino L, de Vasconcellos DS, D’Auria M, Tirillo J, Sarasini F. Flexural and low velocity impact characterization of thermoplastic composites based on PEN and high performance woven fabrics. Polym Compos 2018;39:2942.

    Article  CAS  Google Scholar 

  97. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C. Non-thermal plasma treatment of textiles. Surf Coat Technol 2008;202:3427.

    Article  CAS  Google Scholar 

  98. Ozen E, Singh RK. Atmospheric cold plasma treatment of fruit juices: a review. Trends Food Sci Technol 2020;103:144.

    Article  CAS  Google Scholar 

  99. Kim YS, Lee JH, Park SJ. Effect of ambient plasma treatment on single-walled carbon nanotubes-based epoxy/fabrics for improving fracture toughness and electromagnetic shielding effectiveness. Compos Part a-Appl Sci Manuf 2021;148:106456.

    Article  CAS  Google Scholar 

  100. Ricciardi MR, Papa I, Coppola G, Lopresto V, Sansone L, Antonucci V. Effect of plasma treatment on the impact behavior of epoxy/basalt fiber-reinforced composites: a preliminary study. Polymers 2021;13:1293.

    Article  CAS  Google Scholar 

  101. Garifullin A, Abdullin IS, Skidchenko E, Krasina I, Shaekhov M. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers. J Phys Conf Ser 2016. https://doi.org/10.1088/1742-6596/669/1/012054 .

    Article  Google Scholar 

  102. Rhee KY, Park SJ, Hui D, Qiu Y. Effect of oxygen plasma-treated carbon fibers on the tribological behavior of oil-absorbed carbon/epoxy woven composites. Compos Part B-Eng 2012;43:2395.

    Article  CAS  Google Scholar 

  103. Zhu MM, Ma JX. Basalt fiber modified with lanthanum-ethylenediaminetetraacetic acid as potential reinforcement of cyanate matrix composites. Appl Surf Sci 2019;464:636.

    Article  CAS  Google Scholar 

  104. Kurniawan D, Kim BS, Lee HY, Lim JY. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Compos Part B-Eng 2012;43:1010.

    Article  CAS  Google Scholar 

  105. Mun SY, Ha J, Lee S, Ju Y, Lim HM, Lee D. Prediction of enhanced interfacial bonding strength for basalt fiber/epoxy composites by micromechanical and thermomechanical analyses. Compos Part a-Appl Sci Manuf 2021;142:106208.

    Article  CAS  Google Scholar 

  106. Kim MT, Kim MH, Rhee KY, Park SJ. Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites. Compos Part B-Eng 2011;42:499.

    Article  Google Scholar 

  107. Maqsood HS, Bashir U, Wiener J, Puchalski M, Sztajnowski S, Militky J. Ozone treatment of jute fibers. Cellulose 2017;24:1543.

    Article  CAS  Google Scholar 

  108. Hinterreiter A, Duchoslav J, Kehrer M, Truglas T, Lumetzberger A, Unterweger C, Furst C, Stifter D. Determination of the surface chemistry of ozone-treated carbon fibers by highly consistent evaluation of X-ray photoelectron spectra. Carbon 2019;146:97.

    Article  CAS  Google Scholar 

  109. Fu XL, Lu WM, Chung DDL. Ozone treatment of carbon fiber for reinforcing cement. Carbon 1998;36:1337.

    Article  CAS  Google Scholar 

  110. Valdes H, Sanchez-Polo M, Rivera-Utrilla J, Zaror CA. Effect of ozone treatment on surface properties of activated carbon. Langmuir 2002;18:2111.

    Article  CAS  Google Scholar 

  111. Ai P, Zhang XZ, Dinamarca C, Elsayed M, Yu L, Xi J, Mei ZL. Different effects of ozone and aqueous ammonia in a combined pretreatment method on rice straw and dairy manure fiber for enhancing biomethane production. Biores Technol 2019;282:275.

    Article  CAS  Google Scholar 

  112. Park SJ, Park SJ. Effect of ozone-treated single-walled carbon nanotubes on interfacial properties and fracture toughness of carbon fiber-reinforced epoxy composites. Compos Part a-Appl Sci Manuf 2020;137:105937.

    Article  CAS  Google Scholar 

  113. Czigany T, Deak T, Tamas P. Discontinuous basalt and glass fiber reinforced PP composites from textile prefabricates: effects of interfacial modification on the mechanical performance. Compos Interfaces 2008;15:697.

    Article  CAS  Google Scholar 

  114. Park JM, Kwon DJ, Wang ZJ, Gu GY, DeVries KL. Effect of thermal treatment temperatures on the reinforcing and interfacial properties of recycled carbon fiber-phenolic composites. Compos Part a-Appl Sci Manuf 2013;47:156.

    Article  CAS  Google Scholar 

  115. Chen ZW, Huang YD. Mechanical and interfacial properties of bare basalt fiber. J Adhes Sci Technol 2016;30:2175.

    Article  CAS  Google Scholar 

  116. Yang CC, Zhu DD, Yang FT, Liu QL, Sun CY, Lei K, Zheng Z, Wang XL. Quantitative analysis based on atomic force microscopy characterization of interfacial properties between carbon fibers and epoxy resin subjected to hygrothermal and thermal treatments. Compos Sci Technol 2020;198:108278.

    Article  CAS  Google Scholar 

  117. Förster T, Sommer G, Mäder E, Scheffler C. Surface, interphase and tensile properties of unsized, sized and heat treated basalt fibres. IOP Conf Ser Mater Sci Eng 2016. https://doi.org/10.1088/1757-899X/139/1/012019 .

    Article  Google Scholar 

  118. Pan HW, Kong JJ, Chen YJ, Zhang HL, Dong LS. Improved heat resistance properties of poly(L-lactide)/basalt fiber biocomposites with high crystallinity under forming hybrid-crystalline morphology. Int J Biol Macromol 2019;122:848.

    Article  CAS  Google Scholar 

  119. Bednarcyk BA, Stier B, Simon JW, Reese S, Pineda EJ. Meso- and micro-scale modeling of damage in plain weave composites. Compos Struct 2015;121:258.

    Article  Google Scholar 

  120. Matykiewicz D, Salasinska K, Barczewski M. The effect of poly(vinyl chloride) powder addition on the thermomechanical properties of epoxy composites reinforced with basalt fiber. Materials 2020;13:3611.

    Article  CAS  Google Scholar 

  121. Metro M, Selvaraj M. Effect of nano and microfillers in basalt/epoxy composites. In: Trends in manufacturing and engineering management. Singapore: Springer; 2021. p. 419–32.

    Chapter  Google Scholar 

  122. Thooyavan Y, Kumaraswamidhas LA, Raj RE, Binoj JS. Influence of SiC micro and nano particles on tribological, water absorption and mechanical properties of basalt bidirectional mat/vinyl ester composites. Compos Sci Technol 2022;219:109210.

    Article  CAS  Google Scholar 

  123. Pithalis NEG, Raj JB, Sathish S. Tensile and flexural behaviour of basalt composites with silicon carbide fillers. SILICON 2022;14:1559.

    Article  CAS  Google Scholar 

  124. Yu K, He X, Li Y, Liang C. Investigation of toughening effect of biomass-derived SiCB on basalt fiber-reinforced unsaturated polyester composites. Polym Compos 2020;41:5294.

    Article  CAS  Google Scholar 

  125. Chen X, Xu HB, Liu D, Yan C, Zhu YD. A novel and facile fabrication of polyphosphazene nanotube/carbon fiber multi-scale hybrid reinforcement and its enhancing effect on the interfacial properties of epoxy composites. Compos Sci Technol 2019;169:34.

    Article  CAS  Google Scholar 

  126. Zhang T, Cheng QC, Xu ZM, Jiang B, Wang CF, Huang YD. Improved interfacial property of carbon fiber composites with carbon nanotube and graphene oxide as multi-scale synergetic reinforcements. Compos Part a-Appl Sci Manuf 2019;125:105573.

    Article  CAS  Google Scholar 

  127. Bulut M. Mechanical characterization of basalt/epoxy composite laminates containing graphene nanopellets. Compos Part B-Eng 2017;122:71.

    Article  CAS  Google Scholar 

  128. Kim SH, Park SJ. Effect of graphene oxide on interfacial interactions and fracture toughness of basalt fiber-reinforced epoxy composites. J Nanosci Nanotechnol 2020;20:6760.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022M3J7A1062940). This work was also supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program—Development of technology on materials and components) (20010106, Adhesives with low water permeability and low outgassing) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seul-Yi Lee or Soo-Jin Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Lee, JH., Kim, JW. et al. Interfacial Behaviors of Basalt Fiber-Reinforced Polymeric Composites: A Short Review. Adv. Fiber Mater. 4, 1414–1433 (2022). https://doi.org/10.1007/s42765-022-00204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00204-0

Keywords

Navigation