Skip to main content
Log in

Thermoplastic polyurethanes: synthesis, fabrication techniques, blends, composites, and applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoplastic polyurethanes (TPUs) have attracted increasing attention from the scientific and industrial communities due to their rich chemistry and wide fabrication techniques, which open up a vast field of application. Incorporating other polymers or fillers in TPU composition further expands TPU applicability. TPU blends and composites have been explored in medicine, agriculture, textiles, electronics, aeronautics, food packing, sensors, and automobiles. Soft and hard segments of different compositions have been combined to produce TPUs with specific properties, such as soft touch, elasticity, transparency, impact strength, chemical resistance, and elastic memory. Although petroleum-based precursors are still the most applied, green sources of diisocyanate, polyol, and chain extenders have been increasingly exploited. This review first addresses the fundamental chemistry, synthesis, fabrication techniques, and structure of TPUs and further compiles works on TPU blends and composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Akindoyo JO, Beg MDH, Ghazali S et al (2016) Polyurethane types, synthesis and applications-a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  CAS  Google Scholar 

  2. Lopes GH, Junges J, Fiorio R et al (2012) Thermoplastic polyurethane synthesis using POSS as a chain modifier. Mater Res 15:698–704. https://doi.org/10.1590/S1516-14392012005000085

    Article  CAS  Google Scholar 

  3. Harb SV, Trentin A, Uvida MC, Hammer P (2020) Advanced organic nanocomposite coatings for effective corrosion protection. Corrosion protection at the nanoscale. Elsevier, Amsterdam, pp 315–343

    Chapter  Google Scholar 

  4. Qi HJ, Boyce MC (2005) Stress–strain behavior of thermoplastic polyurethanes. Mech Mater 37:817–839. https://doi.org/10.1016/j.mechmat.2004.08.001

    Article  Google Scholar 

  5. Omnexus (2023) Comprehensive guide on thermoplastic polyurethanes (TPU). https://omnexus.specialchem.com/selection-guide/thermoplastic-polyurethanes-tpu. Accessed 10 Aug 2023

  6. Do Carmo KM, Da Silva MC, Morelli CL (2020) Reaproveitamento de resíduo de espuma rígida de poliuretano em uma matriz termoplástica de poliuretano. Res Soc Dev 9:e127932695. https://doi.org/10.33448/rsd-v9i3.2695

    Article  Google Scholar 

  7. Khalifa M, Anandhan S, Wuzella G et al (2020) Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers–a review. Polym Technol Mater 59:1751–1769. https://doi.org/10.1080/25740881.2020.1768544

    Article  CAS  Google Scholar 

  8. BUSINESS WIRE 2021 (2021) The “Thermoplastic polyurethane (TPU) Market–growth, trends, COVID-19 impact, and forecasts (2021–2026)”. https://www.reportlinker.com/p06106025/Thermoplastic-Polyurethane-TPUMarket-Growth-Trends-COVID-19-Impact-and-Forecasts.html?utm_source=GNW. Accessed 10 Aug 2023

  9. Claeys B, Vervaeck A, Hillewaere XKD et al (2015) Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Eur J Pharm Biopharm 90:44–52. https://doi.org/10.1016/j.ejpb.2014.11.003

    Article  CAS  Google Scholar 

  10. Datta J, Kasprzyk P (2018) Thermoplastic polyurethanes derived from petrochemical or renewable resources: a comprehensive review. Polym Eng Sci 58:E14–E35. https://doi.org/10.1002/pen.24633

    Article  CAS  Google Scholar 

  11. Alhanish A, Abu Ghalia M (2021) Biobased thermoplastic polyurethanes and their capability to biodegradation. In: Jawaid M, Khan TA, Nasir M, Asim M (eds) Eco-friendly adhesives for wood and natural fiber composites. Springer, Singapore, pp 85–104. https://doi.org/10.1007/978-981-33-4749-6_4

  12. Griffin M, Castro N, Bas O et al (2020) The current versatility of polyurethane three-dimensional printing for biomedical applications. Tissue Eng Part B Rev 26:272–283. https://doi.org/10.1089/ten.teb.2019.0224

    Article  CAS  Google Scholar 

  13. Joseph J, Patel RM, Wenham A, Smith JR (2018) Biomedical applications of polyurethane materials and coatings. Trans Inst Met Finish 96:121–129. https://doi.org/10.1080/00202967.2018.1450209

    Article  CAS  Google Scholar 

  14. Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F (2021) Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater Sci Eng C 118:111228. https://doi.org/10.1016/j.msec.2020.111228

    Article  CAS  Google Scholar 

  15. Parcheta P, Datta J (2017) Environmental impact and industrial development of biorenewable resources for polyurethanes. Crit Rev Environ Sci Technol 47:1986–2016. https://doi.org/10.1080/10643389.2017.1400861

    Article  CAS  Google Scholar 

  16. Wu CH, Chen CW, Chen PH et al (2021) Characteristics of polycarbonate soft segment-based thermoplastic polyurethane. Appl Sci 11:5359. https://doi.org/10.3390/app11125359

    Article  CAS  Google Scholar 

  17. Kim SM, Park SA, Hwang SY et al (2017) Environmentally-friendly synthesis of carbonate-type macrodiols and preparation of transparent self-healable thermoplastic polyurethanes. Polymers 9:663. https://doi.org/10.3390/polym9120663

    Article  CAS  Google Scholar 

  18. Pattamaprom C, Wu CH, Chen PH et al (2020) Solvent-free one-shot synthesis of thermoplastic polyurethane based on bio-poly(1,3-propylene succinate) glycol with temperature-sensitive shape memory behavior. ACS Omega 5:4058–4066. https://doi.org/10.1021/acsomega.9b03663

    Article  CAS  Google Scholar 

  19. Parcheta P, Datta J (2020) Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s. Polym Test 83:106337. https://doi.org/10.1016/j.polymertesting.2020.106337

    Article  CAS  Google Scholar 

  20. Kasprzyk P, Głowińska E, Datta J (2021) Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and petrochemical polyols obtained by solvent free two-step method. Eur Polym J 157:110673. https://doi.org/10.1016/j.eurpolymj.2021.110673

    Article  CAS  Google Scholar 

  21. Blache H, Méchin F, Rousseau A et al (2018) New bio-based thermoplastic polyurethane elastomers from isosorbide and rapeseed oil derivatives. Ind Crops Prod 121:303–312. https://doi.org/10.1016/j.indcrop.2018.05.004

    Article  CAS  Google Scholar 

  22. Calvo-Correas T, Martin MD, Retegi A et al (2016) Synthesis and characterization of polyurethanes with high renewable carbon content and tailored properties. ACS Sustain Chem Eng 4:5684–5692. https://doi.org/10.1021/acssuschemeng.6b01578

    Article  CAS  Google Scholar 

  23. Schemmer B, Kronenbitter C, Mecking S (2018) Thermoplastic polyurethane elastomers with aliphatic hard segments based on plant-oil-derived long-chain diisocyanates. Macromol Mater Eng 303:1–8. https://doi.org/10.1002/mame.201700416

    Article  CAS  Google Scholar 

  24. More AS, Lebarbé T, Maisonneuve L et al (2013) Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur Polym J 49:823–833. https://doi.org/10.1016/j.eurpolymj.2012.12.013

    Article  CAS  Google Scholar 

  25. Petrović ZS, Milić J, Zhang F, Ilavsky J (2017) Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 121:26–37. https://doi.org/10.1016/j.polymer.2017.05.072

    Article  CAS  Google Scholar 

  26. Wendels S, Heinrich B, Donnio B, Avérous L (2021) Green and controlled synthesis of short diol oligomers from polyhydroxyalkanoate to develop fully biobased thermoplastics. Eur Polym J 153:110531. https://doi.org/10.1016/j.eurpolymj.2021.110531

    Article  CAS  Google Scholar 

  27. Wang H, Yu J, Fang H et al (2018) Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation. Polymer 137:1–12. https://doi.org/10.1016/j.polymer.2017.12.067

    Article  CAS  Google Scholar 

  28. Zhao X, Shou T, Liang R et al (2020) Bio-based thermoplastic polyurethane derived from polylactic acid with high-damping performance. Ind Crops Prod 154:112619. https://doi.org/10.1016/j.indcrop.2020.112619

    Article  CAS  Google Scholar 

  29. Kasprzyk P, Benes H, Donato RK, Datta J (2020) The role of hydrogen bonding on tuning hard-soft segments in bio-based thermoplastic poly(ether-urethane)s. J Clean Prod 274:122678. https://doi.org/10.1016/j.jclepro.2020.122678

    Article  CAS  Google Scholar 

  30. CHEManager International. https://www.chemanager-online.com/en/products/velvetol-sustainable-alternative-petrochemicals

  31. Hai TAP, Tessman M, Neelakantan N et al (2021) Renewable polyurethanes from sustainable biological precursors. Biomacromol 22:1770–1794. https://doi.org/10.1021/acs.biomac.0c01610

    Article  CAS  Google Scholar 

  32. Tawade BV, Shingte RD, Kuhire SS et al (2017) Bio-based Di-/Poly-isocyanates for polyurethanes: an overview. PU Today 11:41–46. https://doi.org/10.13140/RG.2.2.20183.98726/2

    Article  Google Scholar 

  33. Mi HY, Jing X, Napiwocki BN et al (2017) Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B 5:4137–4151. https://doi.org/10.1039/c7tb00419b

    Article  CAS  Google Scholar 

  34. Beniah G, Fortman DJ, Heath WH et al (2017) Non-isocyanate polyurethane thermoplastic elastomer: amide-based chain extender yields enhanced nanophase separation and properties in polyhydroxyurethane. Macromolecules 50:4425–4434. https://doi.org/10.1021/acs.macromol.7b00765

    Article  CAS  Google Scholar 

  35. Javni I, Bilić O, Bilić N et al (2015) Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments. Polym Int 64:1607–1616. https://doi.org/10.1002/pi.4960

    Article  CAS  Google Scholar 

  36. Shen Z, Zhang J, Zhu W et al (2018) A solvent-free route to non-isocyanate poly(carbonate urethane) with high molecular weight and competitive mechanical properties. Eur Polym J 107:258–266. https://doi.org/10.1016/j.eurpolymj.2018.08.006

    Article  CAS  Google Scholar 

  37. Li S, Jose J, Bouzidi L et al (2014) Maximizing the utility of bio-based diisocyanate and chain extenders in crystalline segmented thermoplastic polyester urethanes: effect of polymerization protocol. Polymer 55:6764–6775. https://doi.org/10.1016/j.polymer.2014.11.013

    Article  CAS  Google Scholar 

  38. Głowińska E, Kasprzyk P, Datta J (2021) The green approach to the synthesis of bio-based thermoplastic polyurethane elastomers with partially bio-based hard blocks. Materials 14:2334. https://doi.org/10.3390/ma14092334

    Article  CAS  Google Scholar 

  39. Beniah G, Liu K, Heath WH et al (2016) Novel thermoplastic polyhydroxyurethane elastomers as effective damping materials over broad temperature ranges. Eur Polym J 84:770–783. https://doi.org/10.1016/j.eurpolymj.2016.05.031

    Article  CAS  Google Scholar 

  40. Błażek K, Datta J (2019) Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit Rev Environ Sci Technol 49:173–211. https://doi.org/10.1080/10643389.2018.1537741

    Article  CAS  Google Scholar 

  41. Honarkar H (2018) Waterborne polyurethanes: a review. J Dispers Sci Technol 39:507–516. https://doi.org/10.1080/01932691.2017.1327818

    Article  CAS  Google Scholar 

  42. Zhang C, Hu J, Chen S, Ji F (2010) Theoretical study of hydrogen bonding interactions on MDI-based polyurethane. J Mol Model 16:1391–1399. https://doi.org/10.1007/s00894-010-0645-4

    Article  CAS  Google Scholar 

  43. Schimpf V, Max JB, Stolz B et al (2019) Semicrystalline non-isocyanate polyhydroxyurethanes as thermoplastics and thermoplastic elastomers and their use in 3D printing by fused filament fabrication. Macromolecules 52:320–331. https://doi.org/10.1021/acs.macromol.8b01908

    Article  CAS  Google Scholar 

  44. Leitsch EK, Beniah G, Liu K et al (2016) Nonisocyanate thermoplastic polyhydroxyurethane elastomers via cyclic carbonate aminolysis: critical role of hydroxyl groups in controlling nanophase separation. ACS Macro Lett 5:424–429. https://doi.org/10.1021/acsmacrolett.6b00102

    Article  CAS  Google Scholar 

  45. Ye S, Xiang X, Wang S et al (2020) Nonisocyanate CO2-based poly(ester-co-urethane)s with tunable performances: a potential alternative to improve the biodegradability of PBAT. ACS Sustain Chem Eng 8:1923–1932. https://doi.org/10.1021/acssuschemeng.9b06294

    Article  CAS  Google Scholar 

  46. Shen Z, Zheng L, Li C et al (2019) A comparison of non-isocyanate and HDI-based poly(ether urethane): structure and properties. Polymer 175:186–194. https://doi.org/10.1016/j.polymer.2019.05.010

    Article  CAS  Google Scholar 

  47. Wołosz D, Parzuchowski PG, Świderska A (2021) Synthesis and characterization of the non-isocyanate poly(carbonate-urethane)s obtained via polycondensation route. Eur Polym J 155:110574. https://doi.org/10.1016/j.eurpolymj.2021.110574

    Article  CAS  Google Scholar 

  48. Li Y, Li SQ, Zhao JB et al (2016) Synthesis and characterization of crystallizable aliphatic thermoplastic poly (ester urethane) elastomers through a non-isocyanate route. Chin J Polym Sci 34:1220–1233. https://doi.org/10.1007/s10118-016-1839-8

    Article  CAS  Google Scholar 

  49. Yuan X, Sang Z, Zhao J et al (2017) Synthesis and properties of non-isocyanate aliphatic thermoplastic polyurethane elastomers with polycaprolactone soft segments. J Polym Res 24:1–11. https://doi.org/10.1007/s10965-017-1249-9

    Article  CAS  Google Scholar 

  50. Guoliang W, Qian W, Jingbo Z et al (2021) Synthesis and thermal and mechanical properties of nonisocyanate poly(ether urethane) thermoplastic elastomers containing dibutylene terephthalate and poly(tetramethylene ether) segments. J Elastomers Plast 53:191–209. https://doi.org/10.1177/0095244320928564

    Article  CAS  Google Scholar 

  51. Suqing L, Jingbo Z, Zhiyuan Z et al (2017) Influence of crystallizable units on the properties of aliphatic thermoplastic poly(ether urethane)s synthesized through a non-isocyanate route. J Elastomers Plast 49:738–757. https://doi.org/10.1177/0095244317695363

    Article  CAS  Google Scholar 

  52. Li S, Zhao J, Zhang Z et al (2015) Synthesis and characterization of aliphatic thermoplastic poly(ether urethane) elastomers through a non-isocyanate route. Polymer 57:164–172. https://doi.org/10.1016/j.polymer.2014.12.009

    Article  CAS  Google Scholar 

  53. Maisonneuve L, Lamarzelle O, Rix E et al (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115:12407–12439. https://doi.org/10.1021/acs.chemrev.5b00355

    Article  CAS  Google Scholar 

  54. Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26:707–761. https://doi.org/10.1002/pat.3522

    Article  CAS  Google Scholar 

  55. Stachak P, Łukaszewska I, Hebda E, Pielichowski K (2021) Recent advances in fabrication of non-isocyanate polyurethane-based composite materials. Materials 14:3497. https://doi.org/10.3390/ma14133497

    Article  CAS  Google Scholar 

  56. Kébir N, Nouigues S, Moranne P, Burel F (2017) Nonisocyanate thermoplastic polyurethane elastomers based on poly(ethylene glycol) prepared through the transurethanization approach. J Appl Polym Sci 134:44991. https://doi.org/10.1002/app.44991

    Article  CAS  Google Scholar 

  57. Jing X, Mi HY, Huang HX, Turng LS (2016) Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. J Mech Behav Biomed Mater 64:94–103. https://doi.org/10.1016/j.jmbbm.2016.07.023

    Article  CAS  Google Scholar 

  58. Xue Y, Tang Z, Qin M et al (2019) Improved toughness of poly(ether-block-amide) via melting blending with thermoplastic polyurethane for biomedical applications. J Appl Polym Sci 136:47397. https://doi.org/10.1002/app.47397

    Article  CAS  Google Scholar 

  59. Bhattacharya S, Hailstone R, Lewis CL (2020) Thermoplastic blend exhibiting shape memory-assisted self-healing functionality. ACS Appl Mater Interfaces 12:46733–46742. https://doi.org/10.1021/acsami.0c13645

    Article  CAS  Google Scholar 

  60. Marini J, Pollet E, Averous L, Bretas RES (2014) Elaboration and properties of novel biobased nanocomposites with halloysite nanotubes and thermoplastic polyurethane from dimerized fatty acids. Polymer 55:5226–5234. https://doi.org/10.1016/j.polymer.2014.08.049

    Article  CAS  Google Scholar 

  61. Russo P, Acierno D, Capezzuto F, et al. (2015) Thermoplastic polyurethane/graphene nanocomposites: The effect of graphene oxide on physical properties. In: AIP conference proceeding, vol 1695, pp 1–6.https://doi.org/10.1063/1.4937308

  62. Shirole A, Nicharat A, Perotto CU, Weder C (2018) Tailoring the properties of a shape-memory polyurethane via nanocomposite formation and nucleation. Macromolecules 51:1841–1849. https://doi.org/10.1021/acs.macromol.7b01728

    Article  CAS  Google Scholar 

  63. Ke K, Solouki Bonab V, Yuan D, Manas-Zloczower I (2018) Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon N Y 139:52–58. https://doi.org/10.1016/j.carbon.2018.06.037

    Article  CAS  Google Scholar 

  64. Miranda C, Castaño J, Valdebenito-Rolack E et al (2020) Copper-polyurethane composite materials: particle size effect on the physical-chemical and antibacterial properties. Polymers 12:1–15. https://doi.org/10.3390/POLYM12091934

    Article  Google Scholar 

  65. Villani M, Consonni R, Canetti M et al (2020) Polyurethane-based composites: effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers 12:1–22. https://doi.org/10.3390/polym12020362

    Article  CAS  Google Scholar 

  66. Gopi JA, Nando GB (2017) Preparation and characterization of nanohydroxyapatite-based nanocomposites derived from immiscible blends of thermoplastic polyurethane and polydimethylsiloxane rubber. J Thermoplast Compos Mater 30:465–489. https://doi.org/10.1177/0892705715604675

    Article  CAS  Google Scholar 

  67. Guo Y, Yan L, Zeng Z et al (2020) TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi-walled carbon nanotubes nanofillers. Polym Eng Sci 60:1118–1128. https://doi.org/10.1002/pen.25365

    Article  CAS  Google Scholar 

  68. Shao L, Dai J, Zhang Z et al (2015) Thermal and electroactive shape memory behaviors of poly( <scp>l</scp> -lactide)/thermoplastic polyurethane blend induced by carbon nanotubes. RSC Adv 5:101455–101465. https://doi.org/10.1039/C5RA20632D

    Article  CAS  Google Scholar 

  69. Gasparotti E, Vignali E, Losi P et al (2019) A 3D printed melt-compounded antibiotic loaded thermoplastic polyurethane heart valve ring design: an integrated framework of experimental material tests and numerical simulations. Int J Polym Mater Polym Biomater 68:1–10. https://doi.org/10.1080/00914037.2018.1525717

    Article  CAS  Google Scholar 

  70. Qu Z, Mi J, Jiao Y et al (2019) Microcellular morphology evolution of polystyrene/thermoplastic polyurethane blends in the presence of supercritical CO2. Cell Polym 38:68–85. https://doi.org/10.1177/0262489319852335

    Article  CAS  Google Scholar 

  71. Claeys B, De BS, Hansen L et al (2014) Release characteristics of polyurethane tablets containing dicarboxylic acids as release modifiers–a case study with diprophylline. Int J Pharm 477:244–250. https://doi.org/10.1016/j.ijpharm.2014.10.046

    Article  CAS  Google Scholar 

  72. Welsh NR, Malcolm RK, Devlin B, Boyd P (2019) Dapivirine-releasing vaginal rings produced by plastic freeforming additive manufacturing. Int J Pharm 572:118725. https://doi.org/10.1016/j.ijpharm.2019.118725

    Article  CAS  Google Scholar 

  73. Alberto N, Fonseca MA, Neto V et al (2017) Incorporation of fiber bragg sensors for shape memory polyurethanes characterization. Sensors 17:1–11. https://doi.org/10.3390/s17112600

    Article  CAS  Google Scholar 

  74. Bozukova D, Bertrand V, Pagnoulle C, De Pauw-Gillet MC (2015) Evaluation of a class of polyurethane materials for intraocular lens manufacturing. J Biomed Mater Res Part B Appl Biomater 103:1274–1286. https://doi.org/10.1002/jbm.b.33305

    Article  CAS  Google Scholar 

  75. Miller AT, Safranski DL, Smith KE et al (2017) Fatigue of injection molded and 3D printed polycarbonate urethane in solution. Polymer (Guildf) 108:121–134. https://doi.org/10.1016/j.polymer.2016.11.055

    Article  CAS  Google Scholar 

  76. Kharbas HA, McNulty JD, Ellingham T et al (2017) Comparative study of chemical and physical foaming methods for injection-molded thermoplastic polyurethane. J Cell Plast 53:373–388. https://doi.org/10.1177/0021955X16652107

    Article  CAS  Google Scholar 

  77. Gómez J, Recio I, Navas A et al (2019) Processing influence on dielectric, mechanical, and electrical properties of reduced graphene oxide–TPU nanocomposites. J Appl Polym Sci 136:1–11. https://doi.org/10.1002/app.47220

    Article  CAS  Google Scholar 

  78. Drupitha MP, Naskar K, Nando GB (2017) Compatibilized TPU-PDMS blends: pros and cons of melt mixing and solution mixing techniques. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.45164

    Article  CAS  Google Scholar 

  79. Sui G, Liu D, Liu Y et al (2019) The dispersion of CNT in TPU matrix with different preparation methods: solution mixing vs melt mixing. Polymer 182:121838. https://doi.org/10.1016/j.polymer.2019.121838

    Article  CAS  Google Scholar 

  80. Gokce O, Kasap M, Akpinar G, Ozkoc G (2017) Preparation, characterization, and in vitro evaluation of chicken feather fiber-thermoplastic polyurethane composites. J Appl Polym Sci 134:45338. https://doi.org/10.1002/app.45338

    Article  CAS  Google Scholar 

  81. Marycz K, Marędziak M, Grzesiak J et al (2016) Biphasic polyurethane/polylactide sponges doped with nano-hydroxyapatite (nHAp) combined with human adipose-derived mesenchymal stromal stem cells for regenerative medicine applications. Polymers 8:339. https://doi.org/10.3390/polym8100339

    Article  CAS  Google Scholar 

  82. Lee JE, Park SJ, Yoon Y et al (2019) Fabrication of 3D freeform porous tubular constructs with mechanical flexibility mimicking that of soft vascular tissue. J Mech Behav Biomed Mater 91:193–201. https://doi.org/10.1016/j.jmbbm.2018.12.020

    Article  CAS  Google Scholar 

  83. Sang Z, Ke K, Manas-Zloczower I (2019) Design strategy for porous composites aimed at pressure sensor application. Small 15:1903487. https://doi.org/10.1002/smll.201903487

    Article  CAS  Google Scholar 

  84. Cui Z, Wu J, Chen J et al (2021) Preparation of 3-D porous PVDF/TPU composite foam with superoleophilic/hydrophobicity for the efficient separation of oils and organics from water. J Mater Sci 56:12506–12523. https://doi.org/10.1007/s10853-021-05995-y

    Article  CAS  Google Scholar 

  85. Zheng Z, Cui Z, Si J et al (2019) Modification of 3-D porous hydroxyapatite/thermoplastic polyurethane composite scaffolds for reinforcing interfacial adhesion by polydopamine surface coating. ACS Omega 4:6382–6391. https://doi.org/10.1021/acsomega.9b00404

    Article  CAS  Google Scholar 

  86. Mi H-Y, Jing X, Salick MR et al (2014) Fabrication of thermoplastic polyurethane tissue engineering scaffold by combining microcellular injection molding and particle leaching. J Mater Res 29:911–922. https://doi.org/10.1557/jmr.2014.67

    Article  CAS  Google Scholar 

  87. Mi H-Y, Jing X, Turng L-S, Peng X-F (2014) Microcellular injection molding and particulate leaching of thermoplastic polyurethane (TPU) scaffolds. pp 392–396

  88. Ho M-H, Kuo P-Y, Hsieh H-J et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138. https://doi.org/10.1016/S0142-9612(03)00483-6

    Article  CAS  Google Scholar 

  89. Bužarovska A, Dinescu S, Lazar AD et al (2019) Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Mater Sci Eng C 104:109893. https://doi.org/10.1016/j.msec.2019.109893

    Article  CAS  Google Scholar 

  90. Merlini C, Silveira A, Ramôa SDAS et al (2018) A comparative study of aligned and random electrospun mats of thermoplastic polyurethane and conductive additives based on polypyrrole. Polym Test 70:486–497. https://doi.org/10.1016/j.polymertesting.2018.08.002

    Article  CAS  Google Scholar 

  91. Saadatmand S, Vos JR, Hooning MJ, Oosterwijk JC, Koppert LB, Bock GH De et al. (2014) Development of electroactive nanofibers based on thermoplastic polyurethane and poly (o-ethoxyaniline) for biological applications. Laryngoscope

  92. Selver E, Karaca N, Onen A et al (2020) Morphological/alignment properties of thermoplastic polyurethane nanofiber affected by processing parameters. J Elastomers Plast 53:009524432096984. https://doi.org/10.1177/0095244320969849

    Article  CAS  Google Scholar 

  93. Chen R, Zhang X, Wang P et al (2019) Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants. Nanotechnology 30:015703. https://doi.org/10.1088/1361-6528/aae611

    Article  CAS  Google Scholar 

  94. Xu W, Ravichandran D, Jambhulkar S et al (2020) Bioinspired, mechanically robust chemiresistor for inline volatile organic compounds sensing. Adv Mater Technol 5:1–11. https://doi.org/10.1002/admt.202000440

    Article  CAS  Google Scholar 

  95. Ren M, Zhou Y, Wang Y et al (2019) Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem Eng J 360:762–777. https://doi.org/10.1016/j.cej.2018.12.025

    Article  CAS  Google Scholar 

  96. Mistry P, Chhabra R, Muke S et al (2021) Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mater Sci Eng C 119:111316. https://doi.org/10.1016/j.msec.2020.111316

    Article  CAS  Google Scholar 

  97. Jiang L, Jiang Y, Stiadle J et al (2019) Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Mater Sci Eng C 94:740–749. https://doi.org/10.1016/j.msec.2018.10.027

    Article  CAS  Google Scholar 

  98. Yu E, Mi H-Y, Zhang J et al (2018) Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. J Biomed Mater Res Part A 106:985–996. https://doi.org/10.1002/jbm.a.36297

    Article  CAS  Google Scholar 

  99. Enayati M, Puchhammer S, Iturri J et al (2020) Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft. J Mech Behav Biomed Mater 112:104077. https://doi.org/10.1016/j.jmbbm.2020.104077

    Article  CAS  Google Scholar 

  100. Mi H-Y, Salick MR, Jing X et al (2015) Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration. J Biomed Mater Res Part A 103:593–603. https://doi.org/10.1002/jbm.a.35208

    Article  CAS  Google Scholar 

  101. Xing C, Guan J, Chen Z et al (2015) Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning. Nanotechnology 26:105704. https://doi.org/10.1088/0957-4484/26/10/105704

    Article  CAS  Google Scholar 

  102. Mi H-Y, Jing X, Yu E et al (2018) Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector. J Mech Behav Biomed Mater 78:433–441. https://doi.org/10.1016/j.jmbbm.2017.11.046

    Article  CAS  Google Scholar 

  103. Przybytek A, Gubańska I, Kucińska-Lipka J, Janik H (2018) Polyurethanes as a potential medical–grade filament for use in fused deposition modeling 3d printers–a brief review. Fibres Text East Eur 26:120–125. https://doi.org/10.5604/01.3001.0012.5168

    Article  CAS  Google Scholar 

  104. I A (2010) ASTM F2792–10: standard terminology for additive manufacturing technologies. ASTM International

  105. Vu CC, Nguyen TT, Kim S, Kim J (2021) Effects of 3d printing-line directions for stretchable sensor performances. Materials 14:1791. https://doi.org/10.3390/ma14071791

    Article  CAS  Google Scholar 

  106. Verstraete G, Samaro A, Grymonpré W et al (2018) 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 536:318–325. https://doi.org/10.1016/j.ijpharm.2017.12.002

    Article  CAS  Google Scholar 

  107. Christ JF, Hohimer CJ, Aliheidari N, et al. (2017) 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites. In: Lynch JP (ed). p 101680E

  108. Aliheidari N, Hohimer C, Ameli A (2017) 3D-printed conductive nanocomposites for liquid sensing applications. In: Volume 1: development and characterization of multifunctional materials; mechanics and behavior of active materials; bioinspired smart materials and systems; energy harvesting; emerging technologies. American Society of Mechanical Engineers

  109. Tzounis L, Petousis M, Grammatikos S, Vidakis N (2020) 3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: a novel approach towards the fabrication of flexible and stretchable organic thermoelectrics. Materials 13:2879. https://doi.org/10.3390/ma13122879

    Article  CAS  Google Scholar 

  110. Yuan S, Li J, Yao X et al (2020) Intelligent optimization system for powder bed fusion of processable thermoplastics. Addit Manuf 34:101182. https://doi.org/10.1016/j.addma.2020.101182

    Article  CAS  Google Scholar 

  111. Sun S, Gan X, Wang Z et al (2020) Dynamic healable polyurethane for selective laser sintering. Addit Manuf 33:101176. https://doi.org/10.1016/j.addma.2020.101176

    Article  CAS  Google Scholar 

  112. Bernardes GP, da Rosa LN, Santana RMC, de Camargo Forte MM (2020) Influence of the morphology and viscoelasticity on the thermomechanical properties of poly(lactic acid)/thermoplastic polyurethane blends compatibilized with ethylene-ester copolymer. J Appl Polym Sci 137:1–11. https://doi.org/10.1002/app.48926

    Article  CAS  Google Scholar 

  113. Zhang H-C, Kang B, Chen L-S, Lu X (2020) Enhancing toughness of poly (lactic acid)/Thermoplastic polyurethane blends via increasing interface compatibility by polyurethane elastomer prepolymer and its toughening mechanism. Polym Test 87:106521. https://doi.org/10.1016/j.polymertesting.2020.106521

    Article  CAS  Google Scholar 

  114. Nofar M, Mohammadi M, Carreau PJ (2020) Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. J Appl Polym Sci 137:1–11. https://doi.org/10.1002/app.49387

    Article  CAS  Google Scholar 

  115. Savaş S (2019) Effect of different parameters on the tribological performance of polypropylene/thermoplastic polyurethane blends under dry sliding conditions. Bull Mater Sci 42:1–7. https://doi.org/10.1007/s12034-019-1788-2

    Article  CAS  Google Scholar 

  116. Bulatović VO, Mihaljević A, Govorčin Bajsić E (2018) Mechanical and interfacial properties of compatibilized polyurethane blends. Polym Eng Sci 58:1911–1922. https://doi.org/10.1002/pen.24800

    Article  CAS  Google Scholar 

  117. Akanbi MJ, Jayasinghe SN, Wojcik A (2021) Characterisation of electrospun PS/PU polymer blend fibre mat for oil sorption. Polymer 212:123129. https://doi.org/10.1016/j.polymer.2020.123129

    Article  CAS  Google Scholar 

  118. Yuan D, Chen M, Xu Y et al (2020) High-performance PA1/TPU films with enhanced dielectric constant and low loss tangent. J Appl Polym Sci 137:1–10. https://doi.org/10.1002/app.48469

    Article  CAS  Google Scholar 

  119. Zou X, Liu B, Wen J et al (2020) Improvement of polyamide/thermoplastic polyurethane blends with polyamide 6-polyurethane copolymer prepared via suspension polymerization as compatibilizer. J Appl Polym Sci 137:1–14. https://doi.org/10.1002/app.49155

    Article  CAS  Google Scholar 

  120. Kiani S, Raisi A (2022) Evaluation of polyurethane/nylon 6(3) blend membranes for enhanced CO2 separation. J Appl Polym Sci 139:e52812. https://doi.org/10.1002/app.52812

    Article  CAS  Google Scholar 

  121. Dutta J, Ramachandran P, Naskar K (2016) Scrutinizing the influence of peroxide crosslinking of dynamically vulcanized EVA/TPU blends with special reference to cable sheathing applications. J Appl Polym Sci 133:1–17. https://doi.org/10.1002/app.43706

    Article  CAS  Google Scholar 

  122. Dutta J, Chatterjee T, Naskar K (2018) LDH as a multifunctional additive in EVA/TPU blends: influence on mechanical, thermal, rheological and flame retardancy properties. Mater Sci Eng B Solid-State Mater Adv Technol 236–237:84–94. https://doi.org/10.1016/j.mseb.2018.11.025

    Article  CAS  Google Scholar 

  123. Dutta J, Chatterjee T, Ramachandran P, Naskar K (2018) Exploring the influence of methylene diphenyl diisocyanate as a modifier for ethylene vinyl acetate/thermoplastic polyurethane blends. Polym Plast Technol Eng 57:1642–1656. https://doi.org/10.1080/03602559.2017.1410847

    Article  CAS  Google Scholar 

  124. Shehata N, Nair R, Boualayan R et al (2022) Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. Sci Rep 12:1–11. https://doi.org/10.1038/s41598-022-11465-5

    Article  CAS  Google Scholar 

  125. Hu J, Song Y, Ning N et al (2021) An effective strategy for improving the interface adhesion of the immiscible methyl vinyl silicone elastomer/thermoplastic polyurethane blends via developing a hybrid janus particle with amphiphilic brush. Polymer 214:123375. https://doi.org/10.1016/j.polymer.2020.123375

    Article  CAS  Google Scholar 

  126. Cui Y, Yan T, Pan H et al (2022) Preparation and characterization of intrinsically compatibilized thermoplastic polyurethane and silicone rubber. Macromol Chem Phys 223:1–9. https://doi.org/10.1002/macp.202100420

    Article  CAS  Google Scholar 

  127. Huang A, Peng X, Turng LS (2018) In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: effect on rheological behavior, mechanical properties, and microcellular foamability. Polymer 134:263–274. https://doi.org/10.1016/j.polymer.2017.11.053

    Article  CAS  Google Scholar 

  128. Noor Azammi AM, Sapuan SM, Ishak MR, Sultan MTH (2018) Mechanical and thermal properties of kenaf reinforced thermoplastic polyurethane (TPU)-natural rubber (NR) composites. Fibers Polym 19:446–451. https://doi.org/10.1007/s12221-018-7737-7

    Article  CAS  Google Scholar 

  129. de León AS, Domínguez-Calvo A, Molina SI (2019) Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF). Mater Des 182:108044. https://doi.org/10.1016/j.matdes.2019.108044

    Article  CAS  Google Scholar 

  130. Zhang R, Huang K, Hu S et al (2017) Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending. Polym Test 63:38–46. https://doi.org/10.1016/j.polymertesting.2017.08.007

    Article  CAS  Google Scholar 

  131. Drupitha MP, Das B, Parameswaran R et al (2018) Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering. Mater Today Commun 16:264–273. https://doi.org/10.1016/j.mtcomm.2018.06.013

    Article  CAS  Google Scholar 

  132. Lu F, Liu Y, xi Gao S, et al (2021) SEBS-b-TPU and nanoclay: effective compatibilizers for promotion of the interfacial adhesion and properties of immiscible SEBS/TPU blends. Polym Bull 78:3293–3310. https://doi.org/10.1007/s00289-020-03272-7

    Article  CAS  Google Scholar 

  133. Gopalan AM, Naskar K (2019) Ultra-high molecular weight styrenic block copolymer/TPU blends for automotive applications: influence of various compatibilizers. Polym Adv Technol 30:608–619. https://doi.org/10.1002/pat.4497

    Article  CAS  Google Scholar 

  134. Seeger P, Ratfisch R, Moneke M, Burkhart T (2018) Addition of thermo-plastic polyurethane (TPU) to poly(methyl methacrylate) (PMMA) to improve its impact strength and to change its scratch behavior. Wear 406–407:68–74. https://doi.org/10.1016/j.wear.2017.11.024

    Article  CAS  Google Scholar 

  135. de Melo Morgado GF, de Moura NK, Martins EF et al (2022) Effect of blend ratio on thermal, mechanical, and shape memory properties of poly (lactic acid)/thermoplastic polyurethane bio-blends. J Polym Res 29:533. https://doi.org/10.1007/s10965-022-03389-5

    Article  CAS  Google Scholar 

  136. Yu P, Huang S, Yang Z et al (2023) Biomechanical properties of a customizable TPU/PCL blended esophageal stent fabricated by 3D printing. Mater Today Commun 34:105196. https://doi.org/10.1016/j.mtcomm.2022.105196

    Article  CAS  Google Scholar 

  137. Lin TA, Lin JH, Bao L (2020) Polypropylene/thermoplastic polyurethane blends: mechanical characterizations, recyclability and sustainable development of thermoplastic materials. J Mater Res Technol 9:5304–5312. https://doi.org/10.1016/j.jmrt.2020.03.056

    Article  CAS  Google Scholar 

  138. Mo X-Z, Wei F-X, Tan D-F et al (2020) The compatibilization of PLA-g-TPU graft copolymer on polylactide/thermoplastic polyurethane blends. J Polym Res 27:33. https://doi.org/10.1007/s10965-019-1999-7

    Article  CAS  Google Scholar 

  139. Kahraman Y, Özdemir B, Kılıç V et al (2021) Super toughened and highly ductile PLA/TPU blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy-based chain extender. J Appl Polym Sci 138:1–16. https://doi.org/10.1002/app.50457

    Article  CAS  Google Scholar 

  140. Zhou H, Wu L, Wu Q (2021) Structural stability of novel composite heart valve prostheses-fatigue and wear performance. Biomed Pharmacother 136:111288. https://doi.org/10.1016/j.biopha.2021.111288

    Article  CAS  Google Scholar 

  141. Wang C, Li Z, Zhang L et al (2020) Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys 85:1–6. https://doi.org/10.1016/j.medengphy.2020.09.007

    Article  Google Scholar 

  142. Mi H, Jing X, Li Z et al (2019) Fabrication and modification of wavy multicomponent vascular grafts with biomimetic mechanical properties, antithrombogenicity, and enhanced endothelial cell affinity. J Biomed Mater Res Part B Appl Biomater 107:2397–2408. https://doi.org/10.1002/jbm.b.34333

    Article  CAS  Google Scholar 

  143. Shimada R, Konishi H, Ozawa H et al (2018) Development of a new surgical sheet containing both silk fibroin and thermoplastic polyurethane for cardiovascular surgery. Surg Today 48:486–494. https://doi.org/10.1007/s00595-017-1615-6

    Article  CAS  Google Scholar 

  144. Heise D, Eickhoff R, Kroh A et al (2019) Elastic TPU mesh as abdominal wall inlay significantly reduces defect size in a minipig model. J Investig Surg 32:501–506. https://doi.org/10.1080/08941939.2018.1436207

    Article  CAS  Google Scholar 

  145. Jašo V, Cvetinov M, Rakić S, Petrović ZS (2014) Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. J Appl Polym Sci. https://doi.org/10.1002/app.41104

    Article  Google Scholar 

  146. Song JJ, Chang HH, Naguib HE (2015) Biocompatible shape memory polymer actuators with high force capabilities. Eur Polym J 67:186–198. https://doi.org/10.1016/j.eurpolymj.2015.03.067

    Article  CAS  Google Scholar 

  147. Suthapakti K, Molloy R, Punyodom W et al (2018) Biodegradable compatibilized poly(l-lactide)/thermoplastic polyurethane blends: design, preparation and property testing. J Polym Environ 26:1818–1830. https://doi.org/10.1007/s10924-017-1082-6

    Article  CAS  Google Scholar 

  148. Rodolfo MG, Costa LC, Marini J (2022) Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends. J Polym Eng 42:214–222. https://doi.org/10.1515/polyeng-2021-0262

    Article  CAS  Google Scholar 

  149. Lin W, Qu J-P (2019) Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene-methyl acrylate–glycidyl methacrylate copolymer. Ind Eng Chem Res 58:10894–10907. https://doi.org/10.1021/acs.iecr.9b01644

    Article  CAS  Google Scholar 

  150. Dogan SK, Boyacioglu S, Kodal M et al (2017) Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “effects of compatibilization.” J Mech Behav Biomed Mater 71:349–361. https://doi.org/10.1016/j.jmbbm.2017.04.001

    Article  CAS  Google Scholar 

  151. Boyacioglu S, Kodal M, Ozkoc G (2020) A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio-blends. Eur Polym J 122:109372. https://doi.org/10.1016/j.eurpolymj.2019.109372

    Article  CAS  Google Scholar 

  152. Wang Y, Zhang J, Li M et al (2022) 3D printing thermo-responsive shape memory polymer composite based on PCL/TPU blends. J Polym Res 29:243. https://doi.org/10.1007/s10965-022-03095-2

    Article  CAS  Google Scholar 

  153. Qu M, Wang H, Chen Q et al (2022) A thermally-electrically double-responsive polycaprolactone–thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance. Chem Eng J 427:131648. https://doi.org/10.1016/j.cej.2021.131648

    Article  CAS  Google Scholar 

  154. Chen Y, Zhao X, Luo C et al (2020) A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance. Compos Part A Appl Sci Manuf 135:105931. https://doi.org/10.1016/j.compositesa.2020.105931

    Article  CAS  Google Scholar 

  155. Bi H, Ye G, Yang H et al (2020) Near infrared-induced shape memory polymer composites with dopamine-modified multiwall carbon nanotubes via 3D-printing. Eur Polym J 136:109920. https://doi.org/10.1016/j.eurpolymj.2020.109920

    Article  CAS  Google Scholar 

  156. Ansari M, Golzar M, Baghani M, Soleimani M (2018) Shape memory characterization of poly(ε-caprolactone) (PCL)/polyurethane (PU) in combined torsion-tension loading with potential applications in cardiovascular stent. Polym Test 68:424–432. https://doi.org/10.1016/j.polymertesting.2018.04.032

    Article  CAS  Google Scholar 

  157. Ren D, Chen Y, Li H et al (2019) High-efficiency dual-responsive shape memory assisted self-healing of carbon nanotubes enhanced polycaprolactone/thermoplastic polyurethane composites. Colloids Surfaces A Physicochem Eng Asp 580:123731. https://doi.org/10.1016/j.colsurfa.2019.123731

    Article  CAS  Google Scholar 

  158. Jia S, Zhu Y, Wang Z et al (2015) Influences of PP-g-MA on the surface free energy, morphologies and mechanical properties of thermoplastic polyurethane/polypropylene blends. J Polym Res 22:1–10. https://doi.org/10.1007/s10965-015-0800-9

    Article  CAS  Google Scholar 

  159. Lin TA, Lin M-C, Lin J-Y et al (2020) Modified polypropylene/ thermoplastic polyurethane blends with maleic-anhydride grafted polypropylene: blending morphology and mechanical behaviors. J Polym Res 27:34. https://doi.org/10.1007/s10965-019-1974-3

    Article  CAS  Google Scholar 

  160. Chen X, Wei Z, Wang W, Jiao C (2019) Properties of flame-retardant TPU based on para-aramid fiber modified with iron diethyl phosphinate. Polym Adv Technol 30:170–178. https://doi.org/10.1002/pat.4456

    Article  CAS  Google Scholar 

  161. Chen X, Zhang X, Wang Y et al (2019) Synergistic fire safety improvement between oyster shell powder and ammonium polyphosphate in TPU composites. Polym Adv Technol 30:1564–1575. https://doi.org/10.1002/pat.4587

    Article  CAS  Google Scholar 

  162. Jiao C, Li M, Chen X, Li S (2020) Flame retardancy and thermal decomposition behavior of TPU/chitosan composites. Polym Adv Technol 31:178–188. https://doi.org/10.1002/pat.4752

    Article  CAS  Google Scholar 

  163. Liu L, Xu Y, Li S et al (2019) A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos Part B Eng 176:107218. https://doi.org/10.1016/j.compositesb.2019.107218

    Article  CAS  Google Scholar 

  164. Liu L, Xu Y, He Y et al (2019) An effective mono-component intumescent flame retardant for the enhancement of water resistance and fire safety of thermoplastic polyurethane composites. Polym Degrad Stab 167:146–156. https://doi.org/10.1016/j.polymdegradstab.2019.07.006

    Article  CAS  Google Scholar 

  165. Wang H, Qiao H, Guo J et al (2020) Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos Part B Eng 182:107498. https://doi.org/10.1016/j.compositesb.2019.107498

    Article  CAS  Google Scholar 

  166. Zhang C, Shi M, Zhang Y et al (2019) EG/TPU composites with enhanced flame retardancy and mechanical properties prepared by microlayer coextrusion technology. RSC Adv 9:23944–23956. https://doi.org/10.1039/C9RA03653A

    Article  CAS  Google Scholar 

  167. Zhou K, Gong K, Zhou Q et al (2020) Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. J Clean Prod 257:120606. https://doi.org/10.1016/j.jclepro.2020.120606

    Article  CAS  Google Scholar 

  168. Anwer A, Bagheri ZS, Fernie G et al (2017) Evolution of the coefficient of friction with surface wear for advanced surface textured composites. Adv Mater Interfaces 4:1–11. https://doi.org/10.1002/admi.201600983

    Article  Google Scholar 

  169. Radzi AM, Sapuan SM, Jawaid M, Mansor MR (2017) Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites. Fibers Polym 18:1353–1358. https://doi.org/10.1007/s12221-017-7311-8

    Article  CAS  Google Scholar 

  170. Zhang Q, Wang J, Yu J, Guo ZX (2017) Improved electrical conductivity of TPU/carbon black composites by addition of COPA and selective localization of carbon black at the interface of sea-island structured polymer blends. Soft Matter 13:3431–3439. https://doi.org/10.1039/c7sm00346c

    Article  CAS  Google Scholar 

  171. Atiqah A, Jawaid M, Sapuan SM et al (2018) Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Compos Struct 202:954–958. https://doi.org/10.1016/j.compstruct.2018.05.009

    Article  Google Scholar 

  172. Bi H, Ren Z, Guo R et al (2018) Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Ind Crops Prod 122:76–84. https://doi.org/10.1016/j.indcrop.2018.05.059

    Article  CAS  Google Scholar 

  173. Yu C, Gong W, Tian W et al (2018) Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm−1 K−1. Compos Sci Technol 160:199–207. https://doi.org/10.1016/j.compscitech.2018.03.028

    Article  CAS  Google Scholar 

  174. Kucuk F, Sismanoglu S, Kanbur Y, Tayfun U (2020) Effect of silane-modification of diatomite on its composites with thermoplastic polyurethane. Mater Chem Phys 256:123683. https://doi.org/10.1016/j.matchemphys.2020.123683

    Article  CAS  Google Scholar 

  175. Sambruno A, Bañon F, Salguero J et al (2019) Kerf taper defect minimization based on abrasive waterjet machining of low thickness thermoplastic carbon fiber composites C/TPU. Materials 12:4192. https://doi.org/10.3390/ma12244192

    Article  CAS  Google Scholar 

  176. Shen W, Wu W, Liu C et al (2020) Thermal conductivity enhancement of PLA/TPU/BN composites by controlling BN distribution and annealing treatment. Plast Rubber Compos 49:204–213. https://doi.org/10.1080/14658011.2020.1729657

    Article  CAS  Google Scholar 

  177. Mi HY, Palumbo SM, Jing X et al (2014) Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size. J Biomed Mater Res-Part B Appl Biomater 102:1434–1444. https://doi.org/10.1002/jbm.b.33122

    Article  CAS  Google Scholar 

  178. Khajavi R, Abbasipour M, Bahador A (2016) Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci. https://doi.org/10.1002/app.42883

    Article  Google Scholar 

  179. Khakbaz H, Ruberu K, Kang L et al (2021) 3D printing of highly flexible, cytocompatible nanocomposites for thermal management. J Mater Sci 56:6385–6400. https://doi.org/10.1007/s10853-020-05661-9

    Article  CAS  Google Scholar 

  180. International Organization for Standardization (ISO) (2011) Vocabulary—part 4: nanostructured materials. ISO/TS 80004–4:2011 Nanotechnologies

  181. Rathod VT, Kumar JS, Jain A (2017) Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci 7:519–548. https://doi.org/10.1007/s13204-017-0592-9

    Article  CAS  Google Scholar 

  182. Nordin NM, Buys YF, Anuar H et al (2019) Development of conductive polymer composites from PLA/TPU blends filled with graphene nanoplatelets. Mater Today Proc 17:500–507. https://doi.org/10.1016/j.matpr.2019.06.328

    Article  CAS  Google Scholar 

  183. Jan R, Habib A, Akram MA et al (2017) Flexible, thin films of graphene–polymer composites for EMI shielding. Mater Res Express 4:035605. https://doi.org/10.1088/2053-1591/aa6351

    Article  CAS  Google Scholar 

  184. Azadi F, Jafari SH, Khonakdar HA et al (2021) Influence of graphene oxide on thermally induced shape memory behavior of PLA/TPU blends: correlation with morphology, creep behavior, crystallinity, and dynamic mechanical properties. Macromol Mater Eng 306:1–12. https://doi.org/10.1002/mame.202000576

    Article  CAS  Google Scholar 

  185. Jun YS, Habibpour S, Hamidinejad M et al (2021) Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. Carbon 174:305–316. https://doi.org/10.1016/j.carbon.2020.12.023

    Article  CAS  Google Scholar 

  186. Li A, Zhang C, Zhang YF (2017) RGO/TPU composite with a segregated structure as thermal interface material. Compos Part A Appl Sci Manuf 101:108–114. https://doi.org/10.1016/j.compositesa.2017.06.009

    Article  CAS  Google Scholar 

  187. Zheng Y, Li Y, Dai K et al (2017) Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos Part A Appl Sci Manuf 101:41–49. https://doi.org/10.1016/j.compositesa.2017.06.003

    Article  CAS  Google Scholar 

  188. Sobha AP, Sreekala PS, Narayanankutty SK (2017) Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Prog Org Coat 113:168–174. https://doi.org/10.1016/j.porgcoat.2017.09.001

    Article  CAS  Google Scholar 

  189. Fang C, Yang R, Zhang Z et al (2018) Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composites. RSC Adv 8:8920–8928. https://doi.org/10.1039/C7RA13634J

    Article  CAS  Google Scholar 

  190. Kanbur Y, Tayfun U (2018) Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites. J Thermoplast Compos Mater 31:1661–1675. https://doi.org/10.1177/0892705717743292

    Article  CAS  Google Scholar 

  191. Xu X, Fan P, Ren J et al (2018) Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos Sci Technol 168:255–262. https://doi.org/10.1016/j.compscitech.2018.10.003

    Article  CAS  Google Scholar 

  192. Ge C, Wang G, Li X et al (2020) Large cyclic deformability of microcellular TPU/MWCNT composite film with conductive stability, and electromagnetic interference shielding and self-cleaning performance. Compos Sci Technol 197:1–8. https://doi.org/10.1016/j.compscitech.2020.108247

    Article  CAS  Google Scholar 

  193. Valenti S, Yousefzade O, Puiggalí J, Macovez R (2020) Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes. Polymer 191:122279. https://doi.org/10.1016/j.polymer.2020.122279

    Article  CAS  Google Scholar 

  194. Li Y, Gao F, Xue Z et al (2018) Synergistic effect of different graphene-CNT heterostructures on mechanical and self-healing properties of thermoplastic polyurethane composites. Mater Des 137:438–445. https://doi.org/10.1016/j.matdes.2017.10.018

    Article  CAS  Google Scholar 

  195. Kanbur Y, Tayfun U (2019) Development of multifunctional polyurethane elastomer composites containing fullerene: mechanical, damping, thermal, and flammability behaviors. J Elastomers Plast 51:262–279. https://doi.org/10.1177/0095244318796616

    Article  CAS  Google Scholar 

  196. Sang Z, Ke K, Manas-Zloczower I (2019) Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors. Compos Part A Appl Sci Manuf 121:207–212. https://doi.org/10.1016/j.compositesa.2019.03.007

    Article  CAS  Google Scholar 

  197. Zhu P, Weng L, Zhang X et al (2020) Enhanced dielectric performance of TPU composites filled with Graphene@poly(dopamine)-Ag core-shell nanoplatelets as fillers. Polym Test 90:106671. https://doi.org/10.1016/j.polymertesting.2020.106671

    Article  CAS  Google Scholar 

  198. Mi HY, Jing X, Salick MR et al (2016) Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. J Mech Behav Biomed Mater 62:417–427. https://doi.org/10.1016/j.jmbbm.2016.05.026

    Article  CAS  Google Scholar 

  199. de Souza VL, dos Anjos EGR, Verginio GEA et al (2021) Carbon-based materials as antistatic agents for the production of antistatic packaging: a review. J Mater Sci Mater Electron 32:3929–3947. https://doi.org/10.1007/s10854-020-05178-6

    Article  CAS  Google Scholar 

  200. Vieira LDS, dos Anjos EGR, Verginio GEA et al (2022) A review concerning the main factors that interfere in the electrical percolation threshold content of polymeric antistatic packaging with carbon fillers as antistatic agent. Nano Sel 3(2):248–260. https://doi.org/10.1002/nano.202100073

    Article  CAS  Google Scholar 

  201. Ramirez D, Jaramillo F (2018) Improved mechanical and antibacterial properties of thermoplastic polyurethanes by efficient double functionalization of silver nanoparticles. J Appl Polym Sci 135:46180. https://doi.org/10.1002/app.46180

    Article  CAS  Google Scholar 

  202. Hojabri L, Kong X, Narine SS (2010) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J Polym Sci Part A Polym Chem 48:3302–3310. https://doi.org/10.1002/pola.24114

    Article  CAS  Google Scholar 

  203. Morales-Cerrada R, Tavernier R, Caillol S (2021) Fully Bio-based thermosetting polyurethanes from bio-based polyols and isocyanates. Polymers 13:1255. https://doi.org/10.3390/polym13081255

    Article  CAS  Google Scholar 

  204. Lingier S, Espeel P, Suarez SS et al (2015) Renewable thermoplastic polyurethanes containing rigid spiroacetal moieties. Eur Polym J 70:232–239. https://doi.org/10.1016/j.eurpolymj.2015.07.017

    Article  CAS  Google Scholar 

  205. Kasprzyk P, Sadowska E, Datta J (2019) Investigation of thermoplastic polyurethanes synthesized via two different prepolymers. J Polym Environ 27:2588–2599. https://doi.org/10.1007/s10924-019-01543-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP (processes 2017/11366-7, 2018/26060-3, 20 19/27415-2, 2020/12501-8) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, process 307933/2021-0, 140604/2022-7) for the financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and 88887.512147/2020-00.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation, data collection, original draft writing, review, and editing were performed by EHB, SVH, LAP, NKM, and GFMM Methodology, data curation, and editing the table and figure were performed by EHB, SVH, and LAP Writing—review, supervision, and editing of the final draft were performed by LAP, FRP, and JM. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Eduardo Henrique Backes or Samarah Vargas Harb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backes, E.H., Harb, S.V., Pinto, L.A. et al. Thermoplastic polyurethanes: synthesis, fabrication techniques, blends, composites, and applications. J Mater Sci 59, 1123–1152 (2024). https://doi.org/10.1007/s10853-023-09077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09077-z

Navigation