Skip to main content

Advertisement

Log in

Hybrid Polymer Membrane Functionalized PBO Fibers/Cyanate Esters Wave-Transparent Laminated Composites

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Hybrid polymer membrane (TA-APTES), synthesized by tannic acid (TA) and aminopropyl trethoxysilane (APTES) based on the Schiff’s base and Michael addition reaction, is deposited on the surface of poly(p-phenylene-2, 6-benzobisoxazole) (PBO) fibers, and then grafted with epoxy-terminated polysesquisiloxane (POSS) to obtain POSS-g-PBO@TA-APTES fibers. The POSS-g-PBO@TA-APTES fibers reinforced bisphenol A dicyanate ester (BADCy) resins (POSS-g-PBO@TA-APTES fibers/BADCy) wave-transparent laminated composites are prepared. The interlaminar shear strength and flexural strength of POSS-g-PBO@TA-APTES fibers/BADCy composites are respectively enhanced from 36.7 and 587.4 MPa to 42.8 and 645.8 MPa, increased by 16.6% and 9.9% compared with those of PBO fibers/BADCy composites. At 1 MHz, the corresponding dielectric constant and dielectric loss are reduced to 2.85 and 0.0047, respectively, lower than those of PBO fibers/BADCy (3.06 and 0.006) composites. Meanwhile, the simulated wave transmittance rate of POSS-g-PBO@TA-APTES fibers/BADCy composites with the thicknesses of 1.5–3.5 mm is higher than 86.2% at 0.3–40 GHz. The volume resistivity and breakdown strength of POSS-g-PBO@TA-APTES fibers/BADCy composites are 2.8 × 1015 Ω·cm and 19.80 kV/mm, higher than PBO fibers/BADCy composites (2.2 × 1015 Ω·cm and 17.69 kV/mm), respectively. And the corresponding heat resistant index is 221.5 °C, lower than PBO fibers/BADCy composites (229.6 °C).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li ZF, Lu F, Lu SS, Liu H, An BY, Wang YH, Huang YD, Hu Z. Fabrication of uvioresistant poly(p-phenylene benzobisoxazole) fibers based on hydrogen bond. J Appl Polym Sci 2020;137:48432.

    Article  CAS  Google Scholar 

  2. Song B, Liu ZD, Wang TT, Wang L. Grafting of CNTs onto the surface of PBO fibers at high-density for enhancing interfacial adhesion, mechanical properties and stability of composites. J Colloid Interf Sci 2021;598:113–25.

    Article  CAS  Google Scholar 

  3. Wu SH, Li CC, Yu ZH, Ling R, Xiao YN, Zheng LC, Liu JJ, Zhang B. Nondestructive strategy to effectively enhance the interfacial adhesion of PBO/epoxy composites. ACS Appl Mater Interfaces 2020;12:45383–93.

    Article  CAS  Google Scholar 

  4. Xu JG, Hong CQ, Geng J, Jin XY, Pan YW, Wang HB, Luo XG, Zhang XH. Facile synthesis, mechanical toughening, low thermal conductivity and fire-retardant of lightweight quartz fiber reinforced polymer nanocomposites. Compos Sci Technol 2021; 211: 108836.

  5. Cheng HM, Fan ZH, Hong CQ, Zhang XH. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection. Compos Part A-Appl S 2021; 143: 106313.

  6. Sharma V, Meena ML, Chaudhary AK, Kumar M. Cenosphere powder filled basalt fiber reinforced epoxy composite: Physical, mechanical, and thermal conductivity analysis. Mater Today Proc 2021;44:4984–9.

    Article  CAS  Google Scholar 

  7. Chen JH, Pakdel E, Xie WJ, Sun L, Xu MY, Liu QZ, Wang D. High-performance natural melanin/poly(vinyl Alcohol-co-ethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv Fiber Mater 2020;2:64–73.

    Article  CAS  Google Scholar 

  8. Wang L, Zhang MY, Yang B, Ding XT, Tan JJ, Song SX, Nie JY. Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications. ACS Appl Mater Interfaces 2021;13:5486–97.

    Article  CAS  Google Scholar 

  9. Lai XX, Guo RH, Xiao HY, Lan JW, Jiang SX, Cui C, Qin WF. Flexible conductive copper/reduced graphene oxide coated PBO fibers modified with poly(dopamine). J Alloys Compd 2019;788:1169–76.

    Article  CAS  Google Scholar 

  10. Li XT, Liu T, Jiao YZ, Dong J, Gan F, Zhao X, Zhang QH. Novel high-performance poly(benzoxazole-co-imide) resins with low dielectric constants and superior thermal stabilities derived from thermal rearrangement of ortho-hydroxy polyimide oligomers. Chem Eng J 2019;359:641–51.

    Article  CAS  Google Scholar 

  11. Liu ZD, Song B, Wang TT, Wang L. Significant improved interfacial properties of PBO fibers composites by in-situ constructing rigid dendritic polymers on fiber surface. Appl Surf Sci 2020; 512: 145719.

  12. Shao Q, Lu F, Yu L, Xu XR, Huang XH, Huang YD, Hu Z. Facile immobilization of graphene nanosheets onto PBO fibers via MOF-mediated coagulation strategy: Multifunctional interface with self-healing and ultraviolet-resistance performance. J Colloid Interf Sci 2021;587:661–71.

    Article  CAS  Google Scholar 

  13. Li ZH, Yang Y, Li H, Liu LL, Zou DH. Enhancement of hydrophobicity and UV aging resistance of poly (p-phenylene benzobisoxazole) fibers modified by fluorosilane and UV absorber. Sci Rep 2019;9:8599.

    Article  Google Scholar 

  14. Jiang ZH, Tian MY, Guo ZG, Wang QC, Jia Z, Ding ZW, Jin J. Corrosion degradation behavior of PBO fibers under strong inorganic acid. Polym Bull 2021;78:4947–58.

    Article  CAS  Google Scholar 

  15. Tamargo K, Villar S, Paredes JI, Martínez A, Tascón JMD, Montes MA. Surface characterization of PBO fibers. Macromolecules 2003;36:8662–72.

    Article  Google Scholar 

  16. Liu DD, Hu J, Zhao YM, Zhou XS, Ning P, Wang Y. Surface modification of PBO fibers by argon plasma and argon plasma combined with coupling agents. J Appl Polym Sci 2006;102:1428–35.

    Article  CAS  Google Scholar 

  17. Zhang TY, Zong W, Ouyang Y, Wu Y, Miao YE, Liu TX. Carbon fiber supported binary metal sulfide catalysts with multi-dimensional structures for electrocatalytic nitrogen reduction reactions over a wide pH range. Adv Fiber Mater 2021;3:229–38.

    Article  CAS  Google Scholar 

  18. Chen L, Du Y, Huang Y, Wu F, Cheng HM, Fei B, Xin JH. Hierarchical poly(p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer. Compos Part A-Appl S 2016;88:123–30.

    Article  CAS  Google Scholar 

  19. Li JW, Zhang XN, Lu YY, Linghu KL, Wang C, Ma ZL, He XH. Electrospun fluorinated polyimide/polyvinylidene fluoride composite membranes with high thermal stability for lithium ion battery separator. Adv Fiber Mater 2021. https://doi.org/10.1007/s42765-021-00093-9 .

    Article  Google Scholar 

  20. Liu D, Chen P, Yu Q, Ma KM, Ding ZF. Improved mechanical performance of PBO fiber-reinforced bismaleimide composite using mixed O2/Ar plasma. Appl Surf Sci 2014;305:630–7.

    Article  CAS  Google Scholar 

  21. Zhang RY, Pan XL, Jiang MW, Peng SJ, Qiu YP. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber. Appl Surf Sci 2012;261:147–54.

    Article  CAS  Google Scholar 

  22. Liu Z, Zhang JL, Tang L, Zhou YX, Lin YH, Wang RT, Kong J, Tang YS, Gu JW. Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos Part B-Eng 2019; 178: 107466.

  23. Zeng J, Kong H, Du X, Xu Q, Jiang F, Li B, Yu M. Surface modification of PBO fibers with 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane in supercritical carbon dioxide for enhancing interfacial strength. Mater Today Chem 2021; 20: 100426.

  24. Liu RB, Han ZW, Li WF, Li XX, Zhuang QX. Improvement of the interfacial shear strength of poly(p-phenylene benzobisoxazole) fiber/epoxy resin composite via a novel surface coating agent. Polym Compos 2016;37:1198–205.

    Article  CAS  Google Scholar 

  25. Yu L, Lu F, Huang XH, Liu YY, Li MY, Pan HZ, Wu LY, Huang YD, Hu Z. Facile interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers. ACS Appl Mater Interfaces 2019;11:39292–303.

    Article  CAS  Google Scholar 

  26. Chen L, Du YZ, Huang YD, Feng W, Chen HM, Xin JH. Hierarchical poly (p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer. Compos Part A-Appl S 2016;88:123–30.

    Article  CAS  Google Scholar 

  27. Shao Q, Hu Z, Xu XR, Yu L, Zhang DY, Huang YD. Mussel-inspired immobilization of BN nanosheets onto poly(p-phenylene benzobisoxazole) fibers: Multifunctional interface for photothermal self-healing. Appl Surf Sci 2018;440:1159–65.

    Article  CAS  Google Scholar 

  28. Tang YS, Dong WC, Tang L, Zhang YK, Kong J, Gu JW. Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites. Compos Commun 2018;8:36–41.

    Article  Google Scholar 

  29. Wang ZX, Ji SQ, Zhang J, He F, Xu ZD, Peng SQ, Li YX. Dual functional membrane with multiple hierarchical structures (MHS) for simultaneous and high-efficiency removal of dye and nano-sized oil droplets in water under high flux. J Membrane Sci 2018;564:317–27.

    Article  CAS  Google Scholar 

  30. Wang ZX, Ji SQ, Zhang J, Liu QX, He F, Peng SQ, Li YX. Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation. J Mater Chem A 2018;6:13959–67.

    Article  CAS  Google Scholar 

  31. Wang ZX, Yang HC, He F, Peng SQ, Li YX, Shao L, Darling SB. Mussel-inspired surface engineering for water-remediation materials. Mat 2019;1:115–55.

    Google Scholar 

  32. Wang ZX, Han MC, Zhang J, He F, Xu ZD, Ji SQ, Peng SQ, Li YX. Designing preferable functional materials based on the secondary reactions of the hierarchical tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating. Chem Eng J 2019;360:299–312.

    Article  CAS  Google Scholar 

  33. Wang ZX, Ji SQ, He F, Cao MY, Peng SQ, Li YX. One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions. J Mater Chem A 2018;6:3391–6.

    Article  CAS  Google Scholar 

  34. Li SM, Zhu YF, Wang Y, Wang BR, Huang YD, Yu T. Cyanate ester resin based composites with high toughness and low outgassing performances. Compos Commun 2021; 23:100574.

  35. Zhou ZX, Li YW, Zhong J, Luo Z, Gong CR, Zheng YQ, Peng SQ, Yu LM, Wu LX, Xu Y. High-performance cyanate ester resins with interpenetration networks for 3D printing. ACS Appl Mater Interfaces 2020;12:38682–9.

    Article  CAS  Google Scholar 

  36. Huang S, Wang L, Li YC, Liang CB, Zhang JL. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J Appl Polym Sci 2021;138:e50649.

  37. Gu JW, Li Y, Liang CB, Tang YS, Tang L, Zhang YK, Kong J, Liu H, Guo ZH. Synchronously improved dielectric and mechanical properties of wave-transparent laminated composites combined with outstanding thermal stability by incorporating iysozyme/POSS functionalized PBO fibers. J Mater Chem C 2018;6:7652–60.

    Article  CAS  Google Scholar 

  38. Taloub N, Henniche A, Liu L, Li J, Rahoui N, Hegazy M, Huang YD. Improving the mechanical properties, UV and hydrothermal aging resistance of PIPD fiber using MXene (Ti3C2(OH)2) nanosheets. Compos Part B-Eng 2019;163:260–71.

    Article  CAS  Google Scholar 

  39. Qiao XX, Zhou Z, Zhang JC, Mo J, Chen GX, Li QF. Synthesis, characterization, and properties of novel UV-resistant poly (urethane-imide)/POSS nanocomposite. High Perform Polym 2018;30:1210–8.

    Article  CAS  Google Scholar 

  40. Ma LC, Zhu YY, Wang MZ, Yang XB, Song GJ, Huang YD. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface. Compos Sci Technol 2019;170:148–56.

    Article  CAS  Google Scholar 

  41. Liu Z, Zhang JL, Tang YS, Xu JB, Ma H, Kong J, Gu JW. Optimization of PBO fibers/cyanate ester wave-transparent laminated composites via incorporation of a fluoride-containing linear interfacial compatibilizer. Compos Sci Technol 2021; 210: 108838.

  42. Liu Z, Fan XL, Zhang JL, Yang ZY, Tang YS, Li JW, Kong J, Gu JW. Improving the comprehensive properties of PBO fibres/cyanate ester composites using a hyperbranched fluorine and epoxy containing PBO precursor. Compos Part A-Appl S 2021; 150: 106596.

  43. Qin M, Zhang L, Zhao X, Wu HJ. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv Funct Mater 2021;31:2103436.

    Article  CAS  Google Scholar 

  44. Xia L, Yang YN, Zhang XY, Zhang J, Zhong B, Zhang T, Wang HT, Wen GW. Crystal structure and wave-transparent properties of lithium aluminum silicate glass-ceramics. Ceram Int 2018;44:14896–900.

    Article  CAS  Google Scholar 

  45. Tang L, Yang ZY, Tang YS, Zhang JL, Kong J, Gu JW. Facile functionalization strategy of PBO fibres for synchronous improving the mechanical and wave-transparent properties of the PBO fibres/cyanate ester laminated composites. Compos Part A- Appl S 2021; 150:106622.

Download references

Acknowledgements

The authors are grateful for the support and funding from National Scientific Research Project (Basis Strengthening Plan); China Postdoctoral Science Foundation (2019M653735); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials from Donghua University (KF2001); State Key Laboratory of Solidification Processing in NWPU (SKLSP202103). L. Tang thanks for the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2021036). This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.

Funding

National Scientific Reasearch Project (Basis Strengthening Plan), China Postdoctoral Science Foundation, 2019M653735, Junliang Zhang, State Key Laboratory of Solidification Processing in NWPU, SKLSP202103, Junwei Gu, The Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University, CX2021036, Lin Tang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junliang Zhang or Junwei Gu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42765_2021_125_MOESM1_ESM.docx

Raw materials, characterization methods, details of surfuace functionalization of PBO fibers, and preparation of POSS-g-PBO@TA-APTES fibers/BADCy wave-transparent laminated composites are provided in the Supplementary Material.1 (DOCX 1143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fan, X., Cheng, L. et al. Hybrid Polymer Membrane Functionalized PBO Fibers/Cyanate Esters Wave-Transparent Laminated Composites. Adv. Fiber Mater. 4, 520–531 (2022). https://doi.org/10.1007/s42765-021-00125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00125-4

Keywords

Navigation