Skip to main content
Log in

Chirality Transfer in Supramolecular Co-assembled Fibrous Material Enabling the Visual Recognition of Sucrose

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Molecular recognition of simple sugars is crucial due to their essential roles in most living organisms. However, it remains extremely challenging to achieve a visual recognition of simple sugars like sucrose in water media under physiological conditions. In this article, the visual recognition of sucrose is accomplished by a chiral supramolecular hydrogel formation through the co-assembly of a two-component fibrous solution (l-phenylalanine based gelator co-diaminopyridine, LDAP) and sucrose. H-bonding between the amino group of LDAP and the hydroxyl group of sucrose facilitates the gelation by loading sucrose into the LDAP solution. The formed hydrogel showed an amplified inversion of circular dichroism (CD) signals as compared to the corresponding LDAP solution. In addition, the effective chirality transfer was accompanied by a bathochromic shift in UV–Vis and FL spectra of the gel. Such a simple and straightforward chiral co-assembled strategy to visually recognize sucrose will have the potential use of smart gelators in saccharides separation and proteomics to be further applied in medical diagnostics and cell imaging.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gunasekara RW, Zhao Y. A general method for selective recognition of monosaccharides and oligosaccharides in water. J Am Chem Soc. 2017;139:829.

    Article  CAS  Google Scholar 

  2. Qing G, Wang X, Jiang L, Fuchs H, Sun T. Saccharide-sensitive wettability switching on a smart polymer surface. Soft Matter. 2009;5:2759.

    Article  CAS  Google Scholar 

  3. Tromans RA, Carter TS, Chabanne L, Crump MP, Li H, Matlock JV, Orchard MG, Davis AP. A biomimetic receptor for glucose. Nat Chem. 2019;11:52.

    Article  CAS  Google Scholar 

  4. Welsh JA, Sharma AJ, Grellinger L, Vos MB. Consumption of added sugars is decreasing in the United States. Am J Clin Nutr. 2011;94:726.

    Article  CAS  Google Scholar 

  5. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181.

    Article  CAS  Google Scholar 

  6. Yao J, Nellas RB, Glover MM, Shen T. Stability and sugar recognition ability of ricin-like carbohydrate binding domains. Biochemistry. 2011;50:4097.

    Article  CAS  Google Scholar 

  7. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol. 2001;19:631.

    Article  CAS  Google Scholar 

  8. Wong S, Zhao J, Cao C, Wong CK, Kuchel RP, Luca SD, Hook JM, Garvey CJ, Smith S, Ho J, Stenzel MH. Just add sugar for carbohydrate induced self-assembly of curcumin. Nat Commun. 2019;10:582.

    Article  CAS  Google Scholar 

  9. Miron CE, Petitjean A. Sugar recognition: designing artificial receptors for applications in biological diagnostics and imaging. ChemBioChem. 2015;16:365.

    Article  CAS  Google Scholar 

  10. Grigoriou S, Johnson EK, Chen L, Adams DJ, James TD, Cameron PJ. Dipeptide hydrogel formation triggered by boronic acid-sugar recognition. Soft Matter. 2012;8:6788.

    Article  CAS  Google Scholar 

  11. Chen Y, Tan Z, Wang W, Peng Y-Y, Narain R. Injectable, self-healing, and multi-responsive hydrogels via dynamic covalent bond formation between benzoxaborole and hydroxyl groups. Biomacromol. 2019;20:1028.

    Article  CAS  Google Scholar 

  12. Mazik M, Sicking W. Molecular recognition of carbohydrates by artificial receptors: systematic studies towards recognition motifs for carbohydrates. Chem Eur J. 2001;7:664.

    Article  CAS  Google Scholar 

  13. DiMaio JTM, Doran TM, Ryan DM, Raymond DM, Nilsson BL. Modulating supramolecular peptide hydrogel viscoelasticity using biomolecular recognition. Biomacromol. 2017;18:3591.

    Article  CAS  Google Scholar 

  14. Liu M, Ouyang G, Niu D, Sang Y. Supramolecular gelatons: towards the design of molecular gels. Org Chem Front. 2018;5:2885.

    Article  CAS  Google Scholar 

  15. Lee D-K, Kang J-H, Lee J-S, Kim H-S, Kim C, Kim JH, Lee T, Son J-H, Park QH, Seo M. Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci Rep. 2015;5:15459.

    Article  CAS  Google Scholar 

  16. Ventura EE, Davis JN, Goran MI. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity. 2011;19:868.

    Article  CAS  Google Scholar 

  17. Manju S, Hari PR, Sreenivasan K. Fluorescent molecularly imprinted polymer film binds glucose with a concomitant changes in fluorescence. Biosens Bioelectron. 2010;26:894.

    Article  CAS  Google Scholar 

  18. Lu W, Zhang L-H, Ye X-S, Su J, Yu Z. Molecular receptors for monosaccharides: di(pyridyl)naphthyridine and di(quinolyl)naphthyridine. Tetrahedron. 2006;62:1806.

    Article  CAS  Google Scholar 

  19. Eersels K, Lieberzeit P, Wagner P. A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques-from principles to applications. ACS Sens. 2016;1:1171.

    Article  CAS  Google Scholar 

  20. Mehwish N, Kousar A, Dang-i AY, Huang J, Dou X, Feng C. Molecular recognition of melamine and cyanuric acid by C2-symmetric phenylalanine based supramolecular hydrogels. Eur Polym J. 2019;118:170.

    Article  CAS  Google Scholar 

  21. Dou X, Li P, Zhang D, Feng C-L. C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. Soft Matter. 2012;8:3231.

    Article  CAS  Google Scholar 

  22. Okamoto Y, Yashima E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed. 1998;37:1020.

    Article  Google Scholar 

  23. Peng T, Dang-i AY, Liu J, Feng C. Photocycloaddition reaction regulated the stability and morphology of hydrogels. Adv Fiber Mater. 2019;1:241–7.

    Article  Google Scholar 

  24. Liu GF, Zhu LY, Ji W, Feng CL, Wei ZX. Inversion of the supramolecular chirality of nanofibrous structures through co-assembly with achiral molecules. Angew Chem Int Ed. 2016;55:2411.

    Article  CAS  Google Scholar 

  25. Liu Y, Wu F, Ding Y, Zhu B, Su Y, Zhu X. Preparation and characterization of paclitaxel/chitosan nanosuspensions for drug delivery system and cytotoxicity evaluation in vitro. Adv Fiber Mater. 2019;1:152–62.

    Article  CAS  Google Scholar 

  26. Sadlej J, Dobrowolski JC, Rode JE, Jamróz MH. DFT study of vibrational circular dichroism spectra of D-lactic acid-water complexes. Phys Chem Chem Phys. 2006;8:101.

    Article  CAS  Google Scholar 

  27. Feng CL, Yin M, Zhang D, Zhu S, Caminade AM, Majoral JP, Müllen K. Fluorescent core-shell star polymers based bioassays for ultrasensitive dna detection by surface plasmon fluorescence spectroscopy. Macromol Rapid Commun. 2011;32:679.

    Article  CAS  Google Scholar 

  28. Liu G, Sheng J, Wu H, Yang C, Yang G, Li Y, Ganguly R, Zhu L, Zhao Y. Controlling supramolecular chirality of two-component hydrogels by J- and H-aggregation of building blocks. J Am Chem Soc. 2018;140:6467.

    Article  CAS  Google Scholar 

  29. Wang F, Feng CL. Metal-ion-mediated supramolecular chirality of l-phenylalanine based hydrogels. Angew Chem Int Ed. 2018;130:5655.

    Article  Google Scholar 

  30. Huang W, Xiao Y, Shi X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv Fiber Mater. 2019;1:32.

    Article  Google Scholar 

  31. Liang M, Wang F, Liu M, Yu J, Si Y, Ding B. N-halamine functionalized electrospun poly(vinyl alcohol-co-ethylene) nanofibrous membranes with rechargeable antibacterial activity for bioprotective applications. Adv Fiber Mater. 2019;1:126–36.

    Article  Google Scholar 

  32. Jung SH, Kim KY, Ahn A, Choi MY, Jaworski J, Jung JH. Determining chiral configuration of diamines via contact angle measurements on enantioselective alanine-appended benzene-tricarboxamide gelators. ACS Appl Mater Interfaces. 2016;8:14102.

    Article  CAS  Google Scholar 

  33. Wang L, Fu Q, Yu J, Liu L, Ding B. Cellulose nanofibrous membranes modified with phenyl glycidyl ether for efficient adsorption of bovine serum albumin. Adv Fiber Mater. 2019;1:188–96.

    Article  Google Scholar 

  34. Li J, Sun J, Wu D, Huang W, Zhu M, Reichmanis E, Yang S. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity. Adv Fiber Mater. 2019;1:71.

    Article  Google Scholar 

  35. Liu G, Liu J, Feng C, Zhao Y. Unexpected right-handed helical nanostructures co-assembled from l-phenylalanine derivatives and achiral bipyridines. Chem Sci. 2017;8:1769.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Program of Shanghai Municipal Education Commission (201701070002E00061), the NSFC (51833006, 51573092), Program for Professors of Special Appointment (Eastern) at the Shanghai Institutions of Higher Learning, Science and Technology Commission of Shanghai Municipality (STCSM, No. 19441903000, 19ZR1425400), and Shanghai Jiao Tong University Interdisciplinary (Biomedical Engineering) Research Fund (No. ZH2018QNA12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqiu Dou or Chuanliang Feng.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Appendix A. Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehwish, N., Dou, X., Zhao, C. et al. Chirality Transfer in Supramolecular Co-assembled Fibrous Material Enabling the Visual Recognition of Sucrose. Adv. Fiber Mater. 2, 204–211 (2020). https://doi.org/10.1007/s42765-020-00028-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00028-w

Keywords

Navigation