Skip to main content
Log in

[2 + 2] Photocycloaddition Reaction Regulated the Stability and Morphology of Hydrogels

  • Letter
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Photoresponsive supramolecular gels as intelligent non-invasive responsive materials can undergo changes in color, state, morphology and electronic properties upon photo irradiation, making them attractive for a variety of applications. Herein, a novel supramolecular hydrogelator DBE with 1,4-divinylbenzene as the central core, connected via amide linkage to l-phenylalanine and peripheral hydrophilic groups, was designed to evaluate the effect of [2 + 2] photocycloaddition reaction on supramolecular hydrogels. UV irradiation decreases the solubility of the hydrogelator DBE and hence, causes the destruction of the gel. SEM images clearly show that irradiation with UV light could induce disintegration of the right-handed helical nanofibers entangled network, which turns into nanoparticles and eventually massive crystals. Circular dichroism and vibrational circular dichroism data also indicate the formation of right-handed helical nanofibers in DBE gel. FTIR and MALDI–TOF–MS spectrum confirm that the variation of stability and aggregated morphology of DBE gel after UV irradiation is attributed to [2 + 2] cycloaddition reaction of vinyl units. This study presents a wonderful model for regulating the stability and aggregated morphology of supramolecular hydrogels via photo irradiation, as well as offers new ideas for designing novel photo responsive materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aparicio F, Nieto-Ortega B, Najera F, Ramirez FJ, Navarrete JTL, Casado J, Sanchez L. Inversion of supramolecular helicity in oligo-p-phenylene-based supramolecular polymers: influence of molecular atropisomerism. Angew Chem Int Ed. 2014;53:1373.

    Article  CAS  Google Scholar 

  2. Zhao D, van Leeuwen T, Cheng J, Feringa BL. Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat Chem. 2017;9:250.

    Article  CAS  Google Scholar 

  3. Kim J, Lee J, Kim WY, Kim H, Lee S, Lee HC, Lee YS, Seo M, Kim SY. Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat Commun. 2015;6:6959.

    Article  CAS  Google Scholar 

  4. Wood DM, Greenland BW, Acton AL, Rodriguez-Llansola F, Murray CA, Cardin CJ, Miravet JF, Escuder B, Hamley IW, Hayes W. pH-Tunable hydrogelators for water purification: structural optimisation and evaluation. Chem Eur J. 2012;18:2692.

    Article  CAS  Google Scholar 

  5. Liu GF, Liu JY, Feng CL, Zhao YL. Unexpected right-handed helical nanostructures co-assembled from l-phenylalanine derivatives and achiral bipyridines. Chem Sci. 2017;8:1769.

    Article  CAS  Google Scholar 

  6. Liu G-F, Zhu L-Y, Ji W, Feng C-L, Wei Z-X. Inversion of the supramolecular chirality of nanofibrous structures through co-assembly with achiral molecules. Angew Chem Int Ed. 2016;55:2411.

    Article  CAS  Google Scholar 

  7. Yarimaga O, Yoon B, Ham D-Y, Lee J, Hara M, Choi Y-K, Kim J-M. Electrophoretic deposition of amphiphilic diacetylene supramolecules: polymerization, selective immobilization, pattern transfer and sensor applications. J Mater Chem. 2011;21:18605.

    Article  CAS  Google Scholar 

  8. Postma SGJ, Vialshin IN, Gerritsen CY, Bao M, Huck WTS. Preprogramming complex hydrogel responses using enzymatic reaction networks. Angew Chem Int Ed. 2017;56:1794.

    Article  CAS  Google Scholar 

  9. Liu S, Tang A, Xie M, Zhao Y, Jiang J, Liang G. Oligomeric hydrogels self-assembled from reduction-controlled condensation. Angew Chem Int Ed. 2015;54:3639.

    Article  CAS  Google Scholar 

  10. Draper ER, Adams DJ. Photoresponsive gelators. Chem Commun. 2016;52:8196.

    Article  CAS  Google Scholar 

  11. Chen L, Yao X, Gu Z, Zheng K, Zhao C, Lei W, Rong Q, Lin L, Wang J, Jiang L, Liu M. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. Chem Sci. 2010;2017:8.

    Google Scholar 

  12. Xu L, Sheybani N, Yeudall WA, Yang H. The effect of photoinitiators on intracellular AKT signaling pathway in tissue engineering application. Biomater Sci. 2015;3:250.

    Article  CAS  Google Scholar 

  13. Sargeant TD, Aparicio C, Goldberger JE, Cui H, Stupp SI. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomater. 2012;8:2456.

    Article  CAS  Google Scholar 

  14. Fan K, Yang J, Wang X, Song J. Rational construction of gel-based supramolecular logic gates by using a functional gelator with multiple-stimuli responsive properties. Soft Matter. 2014;10:8370.

    Article  CAS  Google Scholar 

  15. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc. 2005;127:3801.

    Article  CAS  Google Scholar 

  16. Khan M, Brunklaus G, Enkelmann V, Spiess H-W. Transient states in [2 + 2] photodimerization of cinnamic acid: correlation of solid-state NMR and X-ray analysis. J Am Chem Soc. 2008;130:1741.

    Article  CAS  Google Scholar 

  17. Jiang H, Jiang Y, Han J, Zhang L, Liu M. Helical nanostructures: chirality transfer and a photodriven transformation from superhelix to nanokebab. Angew Chem Int Ed. 2019;58:785.

    Article  CAS  Google Scholar 

  18. Liu JY, Yuan F, Ma XY, Auphedeous DIY, Zhao CL, Liu CT, Shen CY, Feng CL. The cooperative effect of both molecular and supramolecular chirality on cell adhesion. Angew Chem Int Ed. 2018;57:6475.

    Article  CAS  Google Scholar 

  19. Jiang K, Zhang L, Hu Q, Zhang Q, Lin W, Cui Y, Yang Y, Qian G. Thermal stimuli-triggered drug release from a biocompatible porous metal–organic framework. Chem Eur J. 2017;23:10215.

    Article  CAS  Google Scholar 

  20. Miura H, Takahashi S, Kasai H, Okada S, Yase K, Oikawa H, Nakanishi H. Fabrication of nanocrystals from diolefin derivatives and their solid-state photoreaction behavior. Cryst Growth Des. 2010;10:510.

    Article  CAS  Google Scholar 

  21. Das D, Dasgupta A, Roy S, Mitra RN, Debnath S, Das PK. Water gelation of an amino acid-based amphiphile. Chem Eur J. 2006;12:5068.

    Article  CAS  Google Scholar 

  22. Gratzer WB, Holzwarth GM, Doty P. Polarization of the ultraviolet absorption bands in α-helical polypeptides. Proc Natl Acad Sci U S A. 1961;47:1785.

    Article  CAS  Google Scholar 

  23. Sato H, Yajima T, Yamagishi A. Helical inversion of gel fibrils by elongation of perfluoroalkyl chains as studied by vibrational circular dichroism. Chirality. 2016;28:361.

    Article  CAS  Google Scholar 

  24. Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B, Tian W. Piezochromic luminescence based on the molecular aggregation of 9,10-Bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew Chem Int Ed. 2012;51:10782.

    Article  CAS  Google Scholar 

  25. Choudhury P, Mandal D, Brahmachari S, Das PK. Hydrophobic end-modulated amino-acid-based neutral hydrogelators: structure-specific inclusion of carbon nanomaterials. Chem Eur J. 2016;22:5160.

    Article  CAS  Google Scholar 

  26. Wang X, Duan P, Liu M. Organogelation-controlled topochemical [2 + 2] cycloaddition and morphological changes: from nanofiber to peculiar coaxial hollow toruloid-like nanostructures. Chem Eur J. 2013;19:16072.

    Article  CAS  Google Scholar 

  27. Liu L, Zhang L, Wang T, Liu M. Interfacial assembly of amphiphilic styrylquinoxalines: alkyl chain length tunable topochemical reactions and supramolecular chirality. Phys Chem Chem Phys. 2013;15:6243.

    Article  CAS  Google Scholar 

  28. Zhao Y, Zhao J, Yan Y, Li Z, Huang J. Unprecedented parallel packing of unsymmetrical bolaamphiphiles driven by π–π stacking of cinnamoyl groups. Soft Matter. 2010;6:3282.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 51833006), the Innovation Program of Shanghai Municipal Education Commission (201701070002E00061), start-up fund of Henan University for funding to J. Y. Liu (CX3050A0920135), and Program for Professors of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinying Liu or Chuanliang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Dang-i, A.Y., Liu, J. et al. [2 + 2] Photocycloaddition Reaction Regulated the Stability and Morphology of Hydrogels. Adv. Fiber Mater. 1, 241–247 (2019). https://doi.org/10.1007/s42765-019-00014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00014-x

Keywords

Navigation