Skip to main content

Chiral Supramolecular Gels for Visual Enantioselective Recognition Using Sol–Gel Transitions

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 474 Accesses

Abstract

Chiral supramolecular gels are formed by optically active low-molecular-weight gelators that self-assemble into chiral fibrillar nanostructures and entangle each other to immobilize large volumes of solvents through noncovalent interactions. These gels with supramolecular chirality have recently been recognized as smart chiral materials for simple and facile chiral recognition assays, which are of considerable importance in chemistry, biology, physics, and pharmacology. This chapter examines notable examples of enantioselective recognition using visual sol–gel transitions of chiral supramolecular gels upon treatment with optically active analytes, illustrating their applications and limitations, as well as the mechanisms involved in chiral stimuli-responsive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lehn JM (1993) Supramolecular chemistry. Science 260:1762

    Article  CAS  Google Scholar 

  2. Piepenbrock MOM, Lloyd GO, Clarke N, Steed JW (2010) Metal- and anion-binding supramolecular gels. Chem Rev 110:196

    Article  Google Scholar 

  3. Buerkle LE, Rowan SJ (2012) Supramolecular gels formed from multi-component low molecular weight species. Chem Soc Rev 41:6089

    Article  CAS  Google Scholar 

  4. Du XW, Zhou J, Shi JF, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165

    Article  CAS  Google Scholar 

  5. Draper ER, Adams DJ (2017) Low-molecular-weight gels: the state of the art. Chem 3:390

    Article  CAS  Google Scholar 

  6. Amabilino DB, Smith DK, Steed JW (2017) Supramolecular materials. Chem Soc Rev 46:2404

    Article  CAS  Google Scholar 

  7. Qi Z, Schalley CA (2014) Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. Acc Chem Res 47:2222

    Article  CAS  Google Scholar 

  8. Chen LJ, Yang HB (2018) Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc Chem Res 51:2699

    Article  CAS  Google Scholar 

  9. Kakuta T, Yamagishi T, Ogoshi T (2018) Stimuli-responsive supramolecular assemblies constructed from pillar n arenes. Acc Chem Res 51:1656

    Article  CAS  Google Scholar 

  10. Pasteur L (1848) C R Hebd Seances Acad Sci 26:535

    Google Scholar 

  11. Ward TJ, Ward KD (2012) Chiral separations: a review of current topics and trends. Anal Chem 84:626

    Article  CAS  Google Scholar 

  12. Schurig V (2013) Differentiation of enantiomers I, vol 340. Springer, New York

    Book  Google Scholar 

  13. Schurig V (2013) Differentiation of enantiomers II, vol 341. Springer, New York

    Book  Google Scholar 

  14. Scriba GKE (2016) Chiral recognition in separation science - an update. J Chromatogr A 1467:56

    Article  CAS  Google Scholar 

  15. Leung D, Kang SO, Anslyn EV (2012) Rapid determination of enantiomeric excess: a focus on optical approaches. Chem Soc Rev 41:448

    Article  CAS  Google Scholar 

  16. Zhang X, Yin J, Yoon J (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114:4918

    Article  CAS  Google Scholar 

  17. Iida H, Miki M, Iwahana S, Yashima E (2014) Riboflavin-based fluorogenic sensor for chemo- and enantioselective detection of amine vapors. Chem Eur J 20:4257

    Article  CAS  Google Scholar 

  18. Shundo A, Hori K, Ikeda T, Kimizuka N, Tanaka K (2013) Design of a dynamic polymer interface for chiral discrimination. J Am Chem Soc 135:10282

    Article  CAS  Google Scholar 

  19. Qing G, Sun T (2014) Chirality-driven wettability switching and mass transfer. Angew Chem Int Ed 53:930

    Article  CAS  Google Scholar 

  20. Ding S, Cao S, Zhu A, Shi G (2016) Wettability switching of electrode for signal amplification: conversion of conformational change of stimuli-responsive polymer into enhanced electrochemical chiral analysis. Anal Chem 88:12219

    Article  CAS  Google Scholar 

  21. Duan PF, Cao H, Zhang L, Liu MH (2014) Gelation induced supramolecular chirality: chirality transfer, amplification and application. Soft Matter 10:5428

    Article  CAS  Google Scholar 

  22. Liu M, Zhang L, Wang T (2015) Supramolecular chirality in self-assembled systems. Chem Rev 115:7304

    Article  CAS  Google Scholar 

  23. Zhang L, Jin QX, Liu MH (2016) Enantioselective recognition by chiral supramolecular gels. Chem Asian J 11:2642

    Article  CAS  Google Scholar 

  24. Chen X, Huang Z, Chen S-Y, Li K, Yu X-Q, Pu L (2010) Enantioselective gel collapsing: a new means of visual chiral sensing. J Am Chem Soc 132:7297

    Article  CAS  Google Scholar 

  25. Tu T, Fang W, Bao X, Li X, Doetz KH (2011) Visual chiral recognition through enantioselective metallogel collapsing: synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators. Angew Chem Int Ed 50:6601

    Article  CAS  Google Scholar 

  26. Gambhir D, Kumar S, Dey G, Krishnan V, Koner RR (2018) Preferential intermolecular interactions lead to chiral recognition: enantioselective gel formation and collapse. Chem Commun 54:11407

    Article  CAS  Google Scholar 

  27. Yue BB, Yin LY, Zhao WD, Jia XY, Zhu MJ, Wu B, Wu S, Zhu LL (2019) Chirality transfer in coassembled organogels enabling wide-range naked-eye enantiodifferentiation. ACS Nano 13:12438

    Article  CAS  Google Scholar 

  28. Qin MG, Zhang YQ, Liu JY, Xing C, Zhao CL, Dou XQ, Feng CL (2020) Visible enantiomer discrimination via diphenylalanine-based chiral supramolecular self-assembly on multiple platforms. Langmuir 36:2524

    Article  CAS  Google Scholar 

  29. Kimura T, Shinkai S (1998) Chirality-dependent gel formation from sugars and boronic-acid-appended chiral amphiphiles. Chem Lett 27:1035

    Article  Google Scholar 

  30. Džolić Z, Wolsperger K, Žinić M (2006) Synergic effect in gelation by two-component mixture of chiral gelators. New J Chem 30:1411

    Article  Google Scholar 

  31. Zhang F, Xu Z, Dong S, Feng L, Song A, Tung C-H, Hao J (2014) Hydrogels formed by enantioselective self-assembly of histidine-derived amphiphiles with tartaric acid. Soft Matter 10:4855

    Article  Google Scholar 

  32. Zhang XH, Li HM, Zhang X, An M, Fang WW, Yu HT (2017) Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-Base gelator. Front Chem Sci Eng 11:231

    Article  CAS  Google Scholar 

  33. Kameta N, Masuda M, Shimizu T (2015) Qualitative/chiral sensing of amino acids by naked-eye fluorescence change based on morphological transformation and hierarchizing in supramolecular assemblies of pyrene-conjugated glycolipids. Chem Commun 51:11104

    Article  CAS  Google Scholar 

  34. Mukai M, Minamikawa H, Aoyagi M, Asakawa M, Shimizu T, Kogiso M (2012) Solvent-chirality selective organogelation by chiral aspartame lipids. Soft Matter 8:11979

    Article  CAS  Google Scholar 

  35. Nakagawa T, Amakatsu M, Munenobu K, Fujii H, Yamanaka M (2013) Effect of optical purity of C-3-symmetric chiral tris-ureas on supramolecular gel formation. Chem Lett 42:229

    Article  CAS  Google Scholar 

  36. Zheng Y-S, Ran S-Y, Hu Y-J, Liu X-X (2009) Enantioselective self-assembly of chiral calix 4 arene acid with amines. Chem Commun 1121

    Google Scholar 

  37. Tripathi A, Kumar A, Pandey PS (2012) Visual chiral recognition of mandelic acid and alpha-amino acid derivatives by enantioselective gel formation and precipitation. Tetrahedron Lett 53:5745

    Article  CAS  Google Scholar 

  38. Maeda K, Mochizuki H, Osato K, Yashima E (2011) Stimuli-responsive helical poly(phenylacetylene)s bearing cyclodextrin pendants that exhibit enantioselective gelation in response to chirality of a chiral amine and hierarchical super-structured helix formation. Macromolecules 44:3217

    Article  CAS  Google Scholar 

  39. Shapira R, Katalan S, Edrei R, Eichen Y (2020) Chirality dependent inverse-melting and re-entrant gelation in alpha-cyclodextrin/1-phenylethylamine mixtures. RSC Adv 10:39195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Iida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iida, H. (2021). Chiral Supramolecular Gels for Visual Enantioselective Recognition Using Sol–Gel Transitions. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_14

Download citation

Publish with us

Policies and ethics