Skip to main content
Log in

Cellulose Nanofibrous Membranes Modified with Phenyl Glycidyl Ether for Efficient Adsorption of Bovine Serum Albumin

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Hydrophobic interaction chromatography (HIC) as an indispensable method for protein purification has attracted considerable attentions of researchers as well as biopharmaceutical industries. However, the low binding capacity and slow adsorption rate of the currently available HIC media lead to a little supply and high price of the highly purified proteins. Herein, nanofibrous membranes with hydrophobic binding sites were developed for HIC by directly coupling phenyl glycidyl ether on the hydrolyzed cellulose acetate nanofiber membrane (cellulose-phenyl NFM). Scanning electron microscope (SEM), water contact angle (WCA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) surface area analysis and capillary flow porometer (CFP) were applied to evaluate the physically and chemically structural transformation. The obtained cellulose-phenyl NFMs showed a proper hydrophilcity (WCA = 37°), a relatively high BET surface area (3.6 times the surface area of commercial fibrous membranes), and tortuous-channel structure with through-hole size in the range of 0.25–1.2 μm, which led to a little non-specificity adsorption, high bovine serum albumin adsorption capacity of 118 mg g−1, fast adsorption process within 12 h, good long-term stability and reusability. Moreover, compared with traditional modification methods which always include activation and graft two steps, direct coupling method is more efficient for HIC media fabrication. Therefore, cellulose-phenyl NFMs with outstanding protein adsorption performance could be a kind of promising candidate for HIC.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jungbauer A. Chromatographic media for bioseparation. J Chromatogr A. 2005;1065:3.

    Article  CAS  Google Scholar 

  2. Chen B, Peng Y, Valeja SG, Xiu L, Alpert AJ, Ge Y. Online hydrophobic interaction chromatography-mass spectrometry for top-down proteomics. Anal Chem. 2016;88:1885.

    Article  CAS  Google Scholar 

  3. Kawai T, Saito K, Lee W. Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J Chromatogr B Anal Technol Biomed Life Sci. 2003;790:131.

    Article  CAS  Google Scholar 

  4. Ghosh R. Separation of proteins using hydrophobic interaction membrane chromatography. J Chromatogr A. 2001;923:59.

    Article  CAS  Google Scholar 

  5. Chang CS, Suen SY. Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption. J Membr Sci. 2006;275:70.

    Article  CAS  Google Scholar 

  6. Yu D, Chen X, Pelton R, Ghosh R. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody. Biotechnol Bioeng. 2008;99:1434.

    Article  CAS  Google Scholar 

  7. Ghosh R, Wang L. Purification of humanized monoclonal antibody by hydrophobic interaction membrane chromatography. J Chromatogr A. 2006;1107:104.

    Article  CAS  Google Scholar 

  8. Ghosh R. Fractionation of human plasma proteins by hydrophobic interaction membrane chromatography. J Membr Sci. 2005;260:112.

    Article  CAS  Google Scholar 

  9. Huang R, Mah KZ, Malta M, Kostanski LK, Filipe CDM, Ghosh R. Chromatographic separation of proteins using hydrophobic membrane shielded with an environment-responsive hydrogel. J Membr Sci. 2009;345:177.

    Article  CAS  Google Scholar 

  10. Yu D, Ghosh R. Integrated fragmentation of human IgG and purification of fab using a reactant adsorptive membrane bioreactor separator system. Biotechnol Bioeng. 2009;104:152.

    Article  CAS  Google Scholar 

  11. Wang L, Ghosh R. Feasibility study for the fractionation of the major human immunoglobulin G subclasses using hydrophobic interaction membrane chromatography. Anal Chem. 2010;82:452.

    Article  CAS  Google Scholar 

  12. Yu D, Shang X, Ghosh R. Fractionation of different PEGylated forms of a protein by chromatography using environment-responsive membranes. J Chromatogr A. 2010;1217:5595.

    Article  CAS  Google Scholar 

  13. Yoo SM, Ghosh R. Simultaneous removal of leached protein-A and aggregates from monoclonal antibody using hydrophobic interaction membrane chromatography. J Membr Sci. 2012;390:263.

    Article  Google Scholar 

  14. Shang X, Wittbold W, Ghosh R. Purification and analysis of mono-PEGylated HSA by hydrophobic interaction membrane chromatography. J Sep Sci. 2013;36:3673.

    Article  CAS  Google Scholar 

  15. Sadavarte R, Spearman M, Okun N, Butler M, Ghosh R. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography. Biotechnol Bioeng. 2014;111:1139.

    Article  CAS  Google Scholar 

  16. Mah KZ, Ghosh R. Paper-based composite lyotropic salt-responsive membranes for chromatographic separation of proteins. J Membr Sci. 2010;360:149.

    Article  CAS  Google Scholar 

  17. Wu Q, Wang R, Chen X, Ghosh R. Temperature-responsive membrane for hydrophobic interaction based chromatographic separation of proteins in bind-and-elute mode. J Membr Sci. 2014;471:56.

    Article  CAS  Google Scholar 

  18. Chiu HT, Lin JM, Cheng TH, Chou SY. Fabrication of electrospun polyacrylonitrile ion-exchange membranes for application in lysozym. Express Polym Lett. 2011;5:308.

    Article  CAS  Google Scholar 

  19. Jones TT, Fernandez EJ. Hydrophobic interaction chromatography selectivity changes among three stable proteins: conformation does not play a major role. Biotechnol Bioeng. 2004;87:388.

    Article  CAS  Google Scholar 

  20. Kosior A, Antosova M, Faber R, Villain L, Polakovic M. Single-component adsorption of proteins on a cellulose membrane with the phenyl ligand for hydrophobic interaction chromatography. J Membr Sci. 2013;442:216.

    Article  CAS  Google Scholar 

  21. Cui FH, Li Y, Zhao X, Yin X, Yu J, Ding B. Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application. Comput Commun. 2017;6:63.

    Google Scholar 

  22. Ding XX, Li Y, Si Y, Yin X, Yu JY, Ding B. Electrospun polyvinylidene fluoride/SiO2 nanofibrous membranes with enhanced electret property for efficient air filtration. Comput Commun. 2019;13:57.

    Google Scholar 

  23. Hua T, Li Y, Zhao X, Yin X, Yu JY, Ding B. Stable low resistance air filter under high humidity endowed by self-emission far-infrared for effective PM 2.5 capture. Comput Commun. 2017;6:29.

    Google Scholar 

  24. Ma JC, Wang XQ, Fu QX, Si Y, Yu JY, Ding B. Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption. ACS Appl Mater Interfaces. 2015;7:15658.

    Article  CAS  Google Scholar 

  25. Zhang LF, Menkhaus TJ, Fong H. Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers. J Membr Sci. 2008;319:176.

    Article  CAS  Google Scholar 

  26. Che AF, Huang XJ, Xu ZK. Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. J Membr Sci. 2011;366:272.

    Article  CAS  Google Scholar 

  27. Fu QX, Wang XQ, Si Y, Liu LF, Yu JY, Ding B. Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Interfaces. 2016;8:11819.

    Article  CAS  Google Scholar 

  28. Fu QX, Duan C, Yan ZS, Si Y, Liu LF, Yu JY, Ding B. Electrospun nanofibrous composite materials: a versatile platform for high efficiency protein adsorption and separation. Comput Commun. 2018;8:92.

    Google Scholar 

  29. Ogawa T, Ding B, Sone Y, Shiratori S. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology. 2007;18:165607.

    Article  Google Scholar 

  30. Dods SR, Hardick O, Stevens B, Bracewell DG. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography. J Chromatogr A. 2015;1376:74.

    Article  CAS  Google Scholar 

  31. Zhou B, Li Y, Deng HB, Hu Y, Li B. Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloid Surface B. 2014;116:432.

    Article  CAS  Google Scholar 

  32. Arndt P, Bockholt K, Gerdes R, Huschens S, Pyplo J, Redlich H, Samm K. Cellulose oligomers: preparation from cellulose triacetate, chemical transformations and reactions. Cellulose. 2003;10:75.

    Article  CAS  Google Scholar 

  33. Singh R, Arora S, Lal K. Thermal and spectral studies on cellulose modified with various cresyldichlorothiophosphates. Thermochim Acta. 1996;289:9.

    Article  CAS  Google Scholar 

  34. Chen J, Sun Y. Modeling of the salt effects on hydrophobic adsorption equilibrium of protein. J Chromatogr A. 2003;992:29.

    Article  CAS  Google Scholar 

  35. Mak S, Chen D. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigments. 2004;61:93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51673037, 51873029, and 81771338), and the Science and Technology Commission of Shanghai Municipality (Grant No. 18511109500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifang Liu or Bin Ding.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Fu, Q., Yu, J. et al. Cellulose Nanofibrous Membranes Modified with Phenyl Glycidyl Ether for Efficient Adsorption of Bovine Serum Albumin. Adv. Fiber Mater. 1, 188–196 (2019). https://doi.org/10.1007/s42765-019-00010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00010-1

Keywords

Navigation