Skip to main content
Log in

6-Benzylaminopurine mediated indirect organogenesis in Sapindus trifoliatus L. through internodal segments

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

The effect of plant growth regulators (PGRs), explant orientation and subculturing of callus for different passages on the callus induction and shoot differentiation in a medicinal tree Sapindus trifoliatus L. were investigated. The callus was induced from internodal explants obtained from a mature tree on MS medium containing different PGRs, i.e., 2,4-D, BAP, Kin, and zeatin. However, shoot differentiation from callus was obtained only on a medium containing BAP (0.1–3.0 mg l−1) or higher concentrations of zeatin (3.0 or 5.0 mg l−1). The highest number of shoots was obtained when the callus induced on the medium fortified with 3.0 mg l−1 BAP was transferred to a medium containing a comparatively lower concentration (1.0 mg l−1) of BAP. The orientation of the explant (i.e., horizontal or vertical) did not affect callus initiation and further shoot differentiation significantly. The subculturing of callus for different passages had a pronounced effect on shoot differentiation from the callus. The internodal callus showed 100% response for shoot differentiation and an increase in shoot numbers up to the fourth subculture; but, after that significant decline in response and shoot number. The maximum number of shoots (11.43 ± 0.79) was produced after the subculture up to the fourth passage. Thus, by adopting the approach of harvesting shoots and subculture of the remaining callus for seven passages, an average of 45 shoots per 500 mg callus culture was obtained. Maximum percent rooting in micro shoots was obtained when they were pulse-treated with 0.5 mg l−1 IBA for 24 h and transferred to a full-strength MS medium without auxins. Histological analysis revealed the well-developed apical meristem-like structure with leaf primordia during adventitious shoot bud development. The plants developed through internodal callus were established successfully in soil with a 90% survival rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the article.

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ANOVA:

One-way analysis of variance

BAP:

6-Benzylaminopurine

DDW:

Double distilled water

DMRT:

Duncan’s multiple range test

FW:

Fresh weight

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

Kin:

Kinetin

LSD:

Least significant differences

MS:

Murashige and Skoog

NAA:

Naphthaleneacetic acid

NMR:

Nuclear magnetic resonance

PGRs:

Plant growth regulators

References

  • Ahmad N, Faisal M, Anis M, Aref IM (2010) In vitro callus induction and plant regeneration from leaf explants of Ruta graveolens L. S Afr J Bot 76:597–600

    Article  CAS  Google Scholar 

  • Arnold SV, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Organ Cult 69:233–249

    Article  Google Scholar 

  • Arora K, Sharma M, Sharma AK (2009) Control of pattern of regenerant differentiation and plantlet production from leaflet segments of Azadirachta indica A. Juss. (neem). Acta Physiol Plant 31:371–378

    Article  CAS  Google Scholar 

  • Arora K, Rai MK, Sharma AK (2022) Tissue culture mediated biotechnological interventions in medicinal trees: recent progress. Plant Cell Tiss Organ Cult 150:267–287

    Article  Google Scholar 

  • Arul B, Kothai R, Jacob P (2004) Anti-inflammatory activity of Sapindus trifoliatus Linn. J Herb Pharmacother 4:43–50

    Article  CAS  PubMed  Google Scholar 

  • Arulmozhi DK, Sridhar N, Bodhankar SL, Veeranjaneyulu A, Arora SK (2004) In vitro pharmacological investigations of Sapindus trifoliatus in various migraine targets. J Ethnopharmacol 95:239–245

    Article  CAS  PubMed  Google Scholar 

  • Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL, Arora SK (2005) Pharmacological studies of the aqueous extract of Sapindus trifoliatus on central nervous system: possible anti migraine mechanisms. J Ethnopharmacol 97:491–496

    Article  CAS  PubMed  Google Scholar 

  • Asthana P, Jaiswal VS, Jaiswal U (2011) Micropropagation of Sapindus trifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Physiol Plant 33:1821–1829

    Article  CAS  Google Scholar 

  • Asthana P, Rai MK, Jaiswal U (2017) Somatic embryogenesis from sepal explants in Sapindus trifoliatus, a plant valuable in herbal soap industry. Ind Crop Prod 100:228–235

    Article  CAS  Google Scholar 

  • Asthana P, Rai MK, Jaiswal U (2023) In vitro selection, regeneration and characterization of NaCl-tolerant plants of Sapindus trifoliatus: an important multipurpose tree. Plant Cell Tiss Organ Cult 154:227–238

    Article  CAS  Google Scholar 

  • Asthana P, Rai MK, Jaiswal U (2024) Factors affecting the micropropagation of Sapindus trifoliatus L. from nodal explants of mature tree. Curr Biotechnol 13:58–67 

    Article  Google Scholar 

  • Azad MAK, Yokota S, Ohkubo T, Andoh Y, Yahara S, Yoshizawa N (2005) In vitro regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves. Plant Cell Tiss Organ Cult 80:43–50

    Article  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Plant tissue culture: an introductory text. Springer, Delhi

    Book  Google Scholar 

  • Centeno ML, Rodríguez A, Feito I, Fernández B (1996) Relationship between endogenous auxin and cytokinin levels and morphogenic responses in Actinidia deliciosa tissue cultures. Plant Cell Rep 16:58–62

    Article  CAS  PubMed  Google Scholar 

  • Desai HV, Bhatt PN, Mehta AR (1986) Plant regeneration of Sapindus trifoliatus L. (soapnut) through somatic embryogenesis. Plant Cell Rep 3:190–191

    Article  Google Scholar 

  • Faizal A, Geelen D (2013) Saponins and their role in biological processes in plants. Phytochem Rev 12:877–893

    Article  CAS  Google Scholar 

  • Garcia-Luis A, Bordon N, Moreira-Dias JM, Molina RV, Guardiola JL (1999) Explant orientation and polarity determine the morphogenic response of epicotyl segments of Troyer citrange. Ann Bot 84:715–723

    Article  Google Scholar 

  • Garcia-Luis A, Molina RV, Varona V, Castello S, Guardiola JL (2006) The influence of explant orientation and contact with the medium on the pathway of shoot regeneration in vitro in epicotyl cuttings of Troyer citrange. Plant Cell Tiss Organ Cult 85:137–144

    Article  Google Scholar 

  • George EF, Hall MA, Jan De Klerk G (2008) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht

    Google Scholar 

  • Georges D, Chenieux JC, Ochatt SJ (1993) Plant regeneration from aged callus of the woody ornamental species, Lonicera japonica cv. ‘Halls Prolific.’ Plant Cell Rep 13:91–94

    Article  CAS  PubMed  Google Scholar 

  • Giri C, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees Struct Funct 18:115–135

    Article  Google Scholar 

  • Greco B, Tanzarella OA, Carrozzo G, Blanco A (1984) Callus induction and shoot regeneration in sunflower (Helianthus annuus L.). Plant Sci 36:73–77

    Google Scholar 

  • Grover RK, Roy AD, Roy R, Joshi SK, Srivastava V, Arora SK (2005) Complete 1H and 13C NMR assignments of six saponins from Sapindus trifoliatus. Magn Reson Chem 43:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Harry IS, Thorpe TA (1991) Somatic embryogenesis and plantlet regeneration from mature zygotic embryos of red spruce. Bot Gaz 152:446–452

    Article  CAS  Google Scholar 

  • Jaiswal VS, Narayan P (1985) Regeneration of plantlets from the callus of stem segments of adult plants of Ficus religiosa L. Plant Cell Rep 4:256–258

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal N, Verma Y, Misra P (2021) High frequency in vitro callogenesis and plant regeneration of Glycyrrhiza glabra L. Vegetos 34:495–504

    Article  Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Kalia RK, Rai MK, Sharma R, Bhatt RK (2014) Understanding Tecomella undulata: an endangered pharmaceutically important timber species of hot arid regions. Genet Resour Crop Evol 61:1397–1421

    Article  Google Scholar 

  • Kher MM, Nataraj M (2020) In vitro regeneration competency of Crataeva nurvala (Buch Ham) callus. Vegetos 33:52–62

    Article  Google Scholar 

  • Kirtikar KR, Basu BD (1999) Indian medicinal plants 1. International Book Distributors, New Delhi

    Google Scholar 

  • Koné M, Patat-Ochatt EM, Conreux C, Sangwan RS, Ochatt SJ (2007) In vitro morphogenesis from cotyledon and epicotyl explants and flow cytometry distinction between landraces of Bambara groundnut [Vigna subterranea (L.) Verdc] an underutilised grain legume. Plant Cell Tiss Organ Cult 88:61–75

    Article  Google Scholar 

  • Kumlay AM, Ercisli S (2015) Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnol Biotechnol Equip 29:1075–1084

    Article  CAS  Google Scholar 

  • Litz RE, Gray DJ (1992) Organogenesis and somatic embryogenesis. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB International, Wallingford, pp 3–34

    Google Scholar 

  • Litz RE, Jaiswal VS (1991) Micropropagation of tropical and subtropical fruits. In: Debergh PC, Zimmerman RH (eds) Micropropagation. Kluwer Academic Publishers, Dordrecht, pp 247–263

    Chapter  Google Scholar 

  • Mahar KS, Rana TS, Ranade SA, Meena B, Pande V, Palni SLM (2013) Estimation of genetic variability and population structure in Sapindus trifoliatus L., using DNA fingerprinting methods. Trees Struct Funct 27:85–96

    Article  CAS  Google Scholar 

  • McClelland MT, Smith MAL (1990) Vessel type, closure, and explant orientation influence in vitro performance of five woody species. HortScience 25:797–800

    Article  Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naaz A, Altaf S, Naz R, Anis M, Alatar AR (2019) Successful plant regeneration system via de novo organogenesis in Syzygium cumini (L.) Skeels: an important medicinal tree. Agrofor Syst 93:1285–1295

    Article  Google Scholar 

  • Okello D, Yang S, Komakech R, Chung Y, Rahmat E, Gang R, Omujal F, Lamwaka AV, Kang Y (2021) Indirect in vitro regeneration of the medicinal plant, Aspilia africana, and histological assessment at different developmental stages. Front Plant Sci 12:797721

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozudogru EA, Capuana M, Kaya E, Panis B, Lambardi M (2010) Cryopreservation of Fraxinus excelsior L. embryogenic callus by one-step freezing and slow cooling techniques. Cryo Lett 31:63–75

    CAS  Google Scholar 

  • Pandey S, Jaiswal VS (2002) Micropropagation of Terminalia arjuna Roxb. From cotyledonary nodes. Indian J Exp Biol 40:950–953

    PubMed  Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    Article  CAS  PubMed  Google Scholar 

  • Phulwaria M, Rai MK, Harish, Gupta AK, Ram K, Shekhawat NS (2012) An improved micropropagation of Terminalia bellirica from nodal explants of mature tree. Acta Physiol Plant 34:299–305

    Article  CAS  Google Scholar 

  • Purohit VK, Palni LMS, Nandi SK, Rikhari HC (2002) In vitro regeneration of Quercus floribunda Lindl. through cotyledonary nodes: an important tree of central Himalaya. Curr Sci 83:312–316

    Google Scholar 

  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees Struct Funct 24:1–12

    Article  CAS  Google Scholar 

  • Rajeswari V, Paliwal K (2006) In vitro propagation of Albizia odoratissima L.F. (Benth.) from cotyledonary node and leaf nodal explants. In Vitro Cell Dev Biol Plant 42:399–404

    Article  CAS  Google Scholar 

  • Rao MS, Purohit SD (2006) In vitro shoot bud differentiation and plantlet regeneration in Celastrus paniculatus Wild. Biol Plant 50:501–506

    Article  CAS  Google Scholar 

  • Rathore JS, Rai MK, Shekhawat NS (2012) Induction of somatic embryogenesis in gum arabic tree [Acacia senegal (L.) Willd.]. Physiol Mol Biol Plant 18:387–392

    Article  CAS  Google Scholar 

  • Reddy PS, Rodrigues R, Rajasekharan R (2001) Shoot organogenesis and mass propagation of Coleus forskohlii from leaf derived callus. Plant Cell Tiss Organ Cult 66:183–188

    Article  CAS  Google Scholar 

  • Safari N, Tehranifar A, Kharrazi M, Shoor M (2023) Micropropagation of endangered Iris ferdowsii Joharchi and Memariani through callus induction. Plant Cell Tiss Organ Cult 154:595–604

    Article  CAS  Google Scholar 

  • Sass JE (1958) Botanical Microtechnique, 3rd edn. Iowa State University Press Ames, Iowa

    Book  Google Scholar 

  • Savita SB, Virk GS, Nagpal AK (2011) An efficient plant regeneration protocol from callus cultures of Citrus jambhiri Lush. Physiol Mol Biol Plants 17:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shasmita, Rai MK, Naik SK (2018) Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production. Crit Rev Biotechnol 38:836–850

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat NS, Phulwaria M, Harish, Rai MK, Kataria V, Shekhawat S, Gupta AK, Rathore NS, Vyas M, Rathore N, Vibha JB, Choudhary SK, Patel AK, Lodha D, Modi R (2012) Bioresearches of fragile ecosystem/desert. Proceed Nat Acad Sci India Sect B Biol Sci 82:319–334

    Google Scholar 

  • Shekhawat JK, Rai MK, Shekhawat NS, Kataria V (2021) Synergism of m-topolin with auxin and cytokinin enhanced micropropagation of Maytenus emarginata. In Vitro Cell Dev Biol Plant 57:418–426

    Article  CAS  Google Scholar 

  • Singh R, Sharma B (2019) Pharmacological activities and medicinal implications of Sapindus spp. In: Singh R, Sharma B (eds) Biotechnological advances, phytochemical analysis and ethnomedical implications of Sapindus species. Springer, Singapore, pp 17–22

    Google Scholar 

  • Singh R, Rai MK, Kumari N (2015) Somatic embryogenesis and plant regeneration in Sapindus mukorossi Gaertn. from leaf-derived callus induced with 6-benzylaminopurine. Appl Biochem Biotechnol 177:498–510

    Article  CAS  PubMed  Google Scholar 

  • Souza F, Kaya E, Vieira L, Souza A, Carvalho MDJDS, Santos E, Alves A, Ellis D (2017) Cryopreservation of Hamilin sweet orange [(Citrus sinensis (L.) Osbeck)] embryogenic calli using a modified aluminum cryo-plate technique. Sci Hortic 224:302–305

    Article  CAS  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szakiel A, Paczkowski C, Henry M (2011) Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10:471–491

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Photosynthesis: carbon reactions. Plant physiology. Sunderland, Chicago

    Google Scholar 

  • Thakur K, Kanwar K (2018) In vitro plant regeneration by organogenesis from leaf callus of carnation; Dianthus caryophyllus L. cv. ‘master.’ Proc Natl Acad Sci India Sect B Biol Sci 88:1147–1155

    Article  CAS  Google Scholar 

  • Thomas TD, Philip B (2005) Thidiazuron-induced high-frequency shoot organogenesis from leaf-derived callus of a medicinal climber, Tylophora indica (Burm. F.) Merrill. In Vitro Cell Dev Biol Plant 41:124–128

    Article  CAS  Google Scholar 

  • Vrundha CPK, Thomas TD (2023) Indirect shoot regeneration from root explants, assessment of clonal fidelity of regenerated plants using SCoT primers and antioxidant analysis in Thottea siliquosa (Lamk.) Ding Hou. Plant Cell Tiss Organ Cult 155:255–266

    Article  CAS  Google Scholar 

  • Xu L, Cheng F, Zhong Y (2022) Histological and cytological study on meristematic nodule induction and shoot organogenesis in Paeonia ostii ‘Feng Dan.’ Plant Cell Tiss Organ Cult 149:609–620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (PA and MKR) are thankful to University Grant Commission (UGC), India, for financial support in the form of SRF and Start-Up Research Grant, respectively.

Author information

Authors and Affiliations

Authors

Contributions

PA and UJ—conceptualization, PA—experimental design and experimentation, PA and MKR—data collection and analysis, manuscript preparation, UJ—supervision of entire research. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Manoj K. Rai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 83 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asthana, P., Rai, M.K. & Jaiswal, U. 6-Benzylaminopurine mediated indirect organogenesis in Sapindus trifoliatus L. through internodal segments. Vegetos (2024). https://doi.org/10.1007/s42535-024-00873-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-024-00873-9

Keywords

Navigation