Skip to main content

Advertisement

Log in

A review on applications of carbon nanotubes-based metal-sulfide composite anode materials (CNTs/MS) for sodium (Na)-ion batteries

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) have played a significant role in various applications, such as powering electronics and electric vehicles. However, due to the rising cost of lithium and its limited availability in the earth's crust arises, doubts whether the LIBs only have the capability to meet the increasing energy demand in the transportation sector in the future. Hence, researchers viewed sodium-ion batteries (SIBs) as a viable alternative to lithium-ion batteries (LIBs) for future energy storage applications due to the abundant availability of sodium resources, and their excellent electrochemical performance as comparable to that of LIBs. But, the commercialization of Na-ion batteries has been hindered by the degradation of conventional anode material performance and their unstable performance. To address these issues, Carbon Nanotubes (CNTs) based metal sulfide (MS) composites were recently employed as anode materials due to their low cost and higher gravimetric capacities. This review discusses the recent advancements in carbon nanotube-based metal sulfide anode materials, their various synthesis methods, morphological characteristics, and electrochemical properties. Finally, we also present strategies for increasing the electrochemical performance of future-generation SIBs.

Graphical abstract

Carbon nanotube-based anodes make sodium-ion batteries stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data reported in this review can be obtained from the original manuscripts as cited in the review.

References

  1. L.A. Omeiza et al., Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies (Basel) 16(4), 1876 (2023). https://doi.org/10.3390/en16041876

    Article  CAS  Google Scholar 

  2. A. Dhanasekaran et al., Computational Fluid Dynamics for Protonic Ceramic Fuel Cell Stack Modeling: A Brief Review. Energies (Basel) 16(1), 208 (2022). https://doi.org/10.3390/en16010208

    Article  CAS  Google Scholar 

  3. Y. Subramanian, A. Dhanasekaran, L.A. Omeiza, M.R. Somalu, A.K. Azad, A Review on Heteroanionic-Based Materials for Photocatalysis Applications. Catalysts 13(1), 173 (2023). https://doi.org/10.3390/catal13010173

    Article  CAS  Google Scholar 

  4. L. Ahmed Omeiza, U. Mamudu, K. Kozak, S. Ahmed Tijani, and A. Osayemen Daniel, ‘Minimizing the cost of energy consumption for public institutions in Nigeria’, Indian. J. Power. River. Valley. Develop., pp. 137–144, (2022) https://doi.org/10.18311/ijprvd/2021/29660

  5. V. Ramasamy et al., Influence of process parameters on the optimisation of crystalline phase, size and strain of multiferroic Bismuth Iron Tri Oxide (BiFeO3) nanoceramics: A MCDM based TOPSIS approach. Ceram Int 46(2), 1457–1471 (2020). https://doi.org/10.1016/j.ceramint.2019.09.111

    Article  CAS  Google Scholar 

  6. D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  7. C. Zhang, Y.-L. Wei, P.-F. Cao, M.-C. Lin, Energy storage system: Current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 82, 3091–3106 (2018). https://doi.org/10.1016/j.rser.2017.10.030

    Article  CAS  Google Scholar 

  8. Y. Subramanian et al., Artificial intelligence technique based performance estimation of solid oxide fuel cells. Mater Today Proc (2021). https://doi.org/10.1016/j.matpr.2021.06.412

    Article  PubMed  PubMed Central  Google Scholar 

  9. Y. Subramanian, V. Ramasamy, R.K. Gubendiran, G.R. Srinivasan, D. Arulmozhi, Structural, Optical, Thermal and Photocatalytic Dye Degradation Properties of BiFeO3–WO3 Nanocomposites. J Electron Mater 47(12), 7212–7223 (2018). https://doi.org/10.1007/s11664-018-6654-2

    Article  CAS  Google Scholar 

  10. Y. Subramanian et al., Investigations on the enhanced dye degradation activity of heterogeneous BiFeO3–GdFeO3 nanocomposite photocatalyst. Heliyon 5(6), e01831 (2019). https://doi.org/10.1016/j.heliyon.2019.e01831

    Article  PubMed  PubMed Central  Google Scholar 

  11. ‘Renewable’s 2017 global status report paris, France: REN21’, p. 301, (2017)

  12. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science (1979) 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  13. A.Z. al Shaqsi, K. Sopian, A. Al-Hinai, Review of energy storage services, applications, limitations, and benefits. Energy Rep. 6, 288–306 (2020). https://doi.org/10.1016/j.egyr.2020.07.028

    Article  Google Scholar 

  14. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1), 19–29 (2012). https://doi.org/10.1038/nmat3191

    Article  CAS  Google Scholar 

  15. J. Wüllner, N. Reiners, L. Millet, M. Salibi, F. Stortz, M. Vetter, Review of Stationary Energy Storage Systems Applications, Their Placement, and Techno-Economic Potential. Curr. Sustain./Renew. Energy Rep. 8(4), 263–273 (2021). https://doi.org/10.1007/s40518-021-00188-2

    Article  Google Scholar 

  16. G. Chaudhary, J.J. Lamb, O.S. Burheim, B. Austbø, Review of Energy Storage and Energy Management System Control Strategies in Microgrids. Energies (Basel) 14(16), 4929 (2021). https://doi.org/10.3390/en14164929

    Article  CAS  Google Scholar 

  17. T.S. Babu, K.R. Vasudevan, V.K. Ramachandaramurthy, S.B. Sani, S. Chemud, R.M. Lajim, A Comprehensive Review of Hybrid Energy Storage Systems: Converter Topologies, Control Strategies and Future Prospects. IEEE Access 8, 148702–148721 (2020). https://doi.org/10.1109/ACCESS.2020.3015919

    Article  Google Scholar 

  18. Y. Liu, X. Liu, T. Wang, L.-Z. Fan, L. Jiao, Research and application progress on key materials for sodium-ion batteries. Sustain Energy Fuels 1(5), 986–1006 (2017). https://doi.org/10.1039/C7SE00120G

    Article  CAS  Google Scholar 

  19. Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J Power Source 100(1–2), 101–106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4

    Article  CAS  Google Scholar 

  20. Y. Nishi, The development of lithium ion secondary batteries. Chem. Rec. 1(5), 406–413 (2001). https://doi.org/10.1002/tcr.1024

    Article  CAS  PubMed  Google Scholar 

  21. P.-J. Tsais and L. I. Chan, ‘Nickel-based batteries: materials and chemistry’, in Electricity Transmission, Distribution and Storage Systems, Elsevier, pp. 309–397. (2013) https://doi.org/10.1533/9780857097378.3.309

  22. U. Koehler, ‘General Overview of Non-Lithium Battery Systems and their Safety Issues’, in Electrochemical Power Sources: Fundamentals, Systems, and Applications, Elsevier, pp. 21–46. (2019) https://doi.org/10.1016/B978-0-444-63777-2.00002-5.

  23. D. Deng, Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 3(5), 385–418 (2015). https://doi.org/10.1002/ese3.95

    Article  Google Scholar 

  24. Z. Zhang and P. Ramadass, ‘Lithium-Ion Battery lithium-ion battery Systems and Technology lithium-ion battery technology’, in Encyclopedia of Sustainability Science and Technology, New York, NY: Springer New York, pp. 6122–6149. (2012) https://doi.org/10.1007/978-1-4419-0851-3_663

  25. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  26. A. Manthiram, An Outlook on Lithium Ion Battery Technology. ACS Cent Sci 3(10), 1063–1069 (2017). https://doi.org/10.1021/acscentsci.7b00288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Z.A. Kader, A. Marshall, J. Kennedy, A review on sustainable recycling technologies for lithium-ion batteries. Emergent Mater 4(3), 725–735 (2021). https://doi.org/10.1007/s42247-021-00201-w

    Article  CAS  Google Scholar 

  28. J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem Soc Rev 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G

    Article  CAS  PubMed  Google Scholar 

  29. F. Li, Z. Wei, A. Manthiram, Y. Feng, J. Ma, L. Mai, Sodium-based batteries: from critical materials to battery systems. J Mater Chem A Mater 7(16), 9406–9431 (2019). https://doi.org/10.1039/C8TA11999F

    Article  CAS  Google Scholar 

  30. G.G. Eshetu et al., Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives. Adv Energy Mater 10(20), 2000093 (2020). https://doi.org/10.1002/aenm.202000093

    Article  CAS  Google Scholar 

  31. L. J. Hounjet, ‘Comparing lithium‐ and sodium‐ion batteries for their applicability within energy storage systems’, Energy Storage, vol. 4, no. 3, (2022), https://doi.org/10.1002/est2.309

  32. W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Sodium-ion battery anodes: Status and future trends. EnergyChem 1(2), 100012 (2019). https://doi.org/10.1016/j.enchem.2019.100012

    Article  Google Scholar 

  33. L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ Sci 11(9), 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D

    Article  CAS  Google Scholar 

  34. S. Mukherjee, S. bin Mujib, D. Soares, G. Singh, Electrode Materials for High-Performance Sodium-Ion Batteries. Materials 12(12), 1952 (2019). https://doi.org/10.3390/ma12121952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. W. Lu, Z. Wang, S. Zhong, Sodium-ion battery technology: Advanced anodes, cathodes and electrolytes. J Phys Conf Ser 2109(1), 012004 (2021). https://doi.org/10.1088/1742-6596/2109/1/012004

    Article  Google Scholar 

  36. D. Selvakumar, P. Nagaraju, M. Arivanandhan, R. Jayavel, Metal oxide–grafted graphene nanocomposites for energy storage applications. Emergent Mater 4(5), 1143–1165 (2021). https://doi.org/10.1007/s42247-021-00215-4

    Article  CAS  Google Scholar 

  37. Y. Liu, C. Yang, Q. Zhang, M. Liu, Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater 22, 66–95 (2019). https://doi.org/10.1016/j.ensm.2019.01.001

    Article  Google Scholar 

  38. G.M. Tomboc, Y. Wang, H. Wang, J. Li, K. Lee, Sn-based metal oxides and sulfides anode materials for Na ion battery. Energy Storage Mater 39, 21–44 (2021). https://doi.org/10.1016/j.ensm.2021.04.009

    Article  Google Scholar 

  39. M. Jing et al., Facile Synthesis of ZnS/N, S Co-doped Carbon Composite from Zinc Metal Complex for High-Performance Sodium-Ion Batteries. ACS Appl Mater Interfaces 10(1), 704–712 (2018). https://doi.org/10.1021/acsami.7b15659

    Article  CAS  PubMed  Google Scholar 

  40. F. Tao et al., Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives. J Alloys Compd 873, 159742 (2021). https://doi.org/10.1016/j.jallcom.2021.159742

    Article  CAS  Google Scholar 

  41. Y. Xiao, S.H. Lee, Y.-K. Sun, The Application of Metal Sulfides in Sodium Ion Batteries. Adv Energy Mater 7(3), 1601329 (2017). https://doi.org/10.1002/aenm.201601329

    Article  CAS  Google Scholar 

  42. J. Li, D. Yan, T. Lu, W. Qin, Y. Yao, L. Pan, Significantly Improved Sodium-Ion Storage Performance of CuS Nanosheets Anchored into Reduced Graphene Oxide with Ether-Based Electrolyte. ACS Appl Mater Interfaces 9(3), 2309–2316a (2017). https://doi.org/10.1021/acsami.6b12529

    Article  CAS  PubMed  Google Scholar 

  43. Y. Chai, Y. Du, L. Li, N. Wang, Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Nanotechnology 31(21), 215402 (2020). https://doi.org/10.1088/1361-6528/ab7049

    Article  CAS  PubMed  Google Scholar 

  44. H. Zhang et al., Recent advances in nanostructured carbon for sodium-ion batteries. J Mater Chem A Mater 8(4), 1604–1630 (2020). https://doi.org/10.1039/C9TA09984K

    Article  CAS  Google Scholar 

  45. G. Yang et al., Carbon-Based Alloy-Type Composite Anode Materials toward Sodium-Ion Batteries. Small 15(22), 1900628 (2019). https://doi.org/10.1002/smll.201900628

    Article  CAS  Google Scholar 

  46. M. Chen, Y. Zhang, G. Xing, and Y. Tang, ‘Building High Power Density of Sodium-Ion Batteries: Importance of Multidimensional Diffusion Pathways in Cathode Materials’. Front Chem, vol. 8, (2020), https://doi.org/10.3389/fchem.2020.00152

  47. A. Ramesh, A. Tripathi, P. Balaya, A mini review on cathode materials for sodium-ion batteries. Int J Appl Ceram Technol 19(2), 913–923 (2022). https://doi.org/10.1111/ijac.13920

    Article  CAS  Google Scholar 

  48. I. Hasa et al., Challenges of today for Na-based batteries of the future: From materials to cell metrics. J Power Sources 482, 228872 (2021). https://doi.org/10.1016/j.jpowsour.2020.228872

    Article  CAS  Google Scholar 

  49. L. Fang et al., Conversion-Alloying Anode Materials for Sodium Ion Batteries. Small 17(37), 2101137 (2021). https://doi.org/10.1002/smll.202101137

    Article  CAS  Google Scholar 

  50. W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-Ion Battery Anodes: Materials and Electrochemistry. Acc Chem Res 49(2), 231–240 (2016). https://doi.org/10.1021/acs.accounts.5b00482

    Article  CAS  PubMed  Google Scholar 

  51. Y. Mei, Y. Huang, X. Hu, Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A Mater 4(31), 12001–12013 (2016). https://doi.org/10.1039/C6TA04611H

    Article  CAS  Google Scholar 

  52. L. Shi et al., SnS 2 Nanosheets Coating on Nanohollow Cubic CoS 2 /C for Ultralong Life and High Rate Capability Half/Full Sodium-Ion Batteries. Small 14(41), 1802716 (2018). https://doi.org/10.1002/smll.201802716

    Article  CAS  Google Scholar 

  53. Y. Subramanian et al., Efficient degradation of endocrine-disrupting compounds by heterostructured perovskite photocatalysts and its correlation with their ferroelectricity. New J. Chem. 46(24), 11851–11861 (2022). https://doi.org/10.1039/D2NJ00785A

    Article  CAS  Google Scholar 

  54. Y. Subramanian, B. Mishra, S. Mandal, R. Gubendiran, Y.S. Chaudhary, Design of heterostructured perovskites for enhanced photocatalytic activity: Insight into their charge carrier dynamics. Mater Today Proc 35, 179–185 (2021). https://doi.org/10.1016/j.matpr.2020.04.215

    Article  CAS  Google Scholar 

  55. W. Ren, H. Zhang, C. Guan, C. Cheng, SnS2 nanosheets arrays sandwiched by N-doped carbon and TiO2 for high-performance Na-ion storage. Green Energy Environ. 3(1), 42–49 (2018). https://doi.org/10.1016/j.gee.2017.09.005

    Article  Google Scholar 

  56. Y. Fang, D. Luan, Y. Chen, S. Gao, X.W. David Lou, Rationally Designed Three-Layered Cu 2 S@Carbon@MoS 2 Hierarchical Nanoboxes for Efficient Sodium Storage. Angewandte Chemie Int. Ed. 59(18), 7178–7183 (2020). https://doi.org/10.1002/anie.201915917

    Article  CAS  Google Scholar 

  57. T. Hou et al., Covalent Coupling-Stabilized Transition-Metal Sulfide/Carbon Nanotube Composites for Lithium/Sodium-Ion Batteries. ACS Nano 15(4), 6735–6746 (2021). https://doi.org/10.1021/acsnano.0c10121

    Article  CAS  PubMed  Google Scholar 

  58. D. Zhang, W. Sun, Y. Zhang, Y. Dou, Y. Jiang, S.X. Dou, Engineering Hierarchical Hollow Nickel Sulfide Spheres for High-Performance Sodium Storage. Adv Funct Mater 26(41), 7479–7485 (2016). https://doi.org/10.1002/adfm.201602933

    Article  CAS  Google Scholar 

  59. J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. J. Energy Chem. 33, 100–124 (2019). https://doi.org/10.1016/j.jechem.2018.09.001

    Article  Google Scholar 

  60. Z. Che, Y. Li, K. Chen, M. Wei, Hierarchical MoS2@RGO nanosheets for high performance sodium storage. J Power Sources 331, 50–57 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.139

    Article  CAS  Google Scholar 

  61. B. Luo et al., Controllable growth of SnS 2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. J Mater Chem A Mater 6(4), 1462–1472 (2018). https://doi.org/10.1039/C7TA09757C

    Article  CAS  Google Scholar 

  62. S.Y. Shajaripour Jaberi, A. Ghaffarinejad, Z. Khajehsaeidi, A. Sadeghi, The synthesis, properties, and potential applications of CoS2 as a transition metal dichalcogenide (TMD). Int J Hydrogen Energy 5, 25 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.056

    Article  CAS  Google Scholar 

  63. P. Yadav, A. Patrike, K. Wasnik, V. Shelke, and M. Shelke, ‘Strategies and practical approaches for stable and high energy density Sodium-ion battery: a step closer to commercialization’, Materials Today Sustainability, p. 100385, (2023), https://doi.org/10.1016/j.mtsust.2023.100385

  64. J. Hu et al., Prussian Blue Analogue-Derived Fe-Doped CoS2 Nanoparticles Confined in Bayberry-like N-Doped Carbon Spheres as Anodes for Sodium-Ion Batteries. Polymers (Basel) 15(6), 1496 (2023). https://doi.org/10.3390/polym15061496

    Article  CAS  PubMed  Google Scholar 

  65. D. Yan et al., ‘NiS 2 /FeS Heterostructured Nanoflowers for High-Performance Sodium Storage’, Energy Material Advances, vol. 4,. (2023) https://doi.org/10.34133/energymatadv.0012

  66. G. Yang et al., Bowl-shaped carbon loaded Co9S8 nanoparticles connected by carbon nanotubes with excellent rate performance for sodium-ion batteries. Electrochim Acta 441, 141804 (2023). https://doi.org/10.1016/j.electacta.2022.141804

    Article  CAS  Google Scholar 

  67. D. Li et al., Double-Helix Structure in Carrageenan-Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodium-Ion Storage. Angew. Chem. Int. Ed. 55(51), 15925–15928 (2016). https://doi.org/10.1002/anie.201610301

    Article  CAS  Google Scholar 

  68. T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Structure and Electronic Properties of Carbon Nanotubes. J Phys Chem B 104(13), 2794–2809 (2000). https://doi.org/10.1021/jp993592k

    Article  CAS  Google Scholar 

  69. A. Eatemadi et al., Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1), 393 (2014). https://doi.org/10.1186/1556-276X-9-393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  71. A. Suttee, V. Mishra, M. Singh, P. Nayak, P. Sriram, Carbon Nanotubes as Emerging Nanocarriers in Drug Delivery An Overview. Int. J. Pharm. Qual. Assur. 11(03), 373–378 (2020)

    Article  Google Scholar 

  72. C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics – moving forward. Chem. Soc. Rev. 42(7), 2592–2609 (2013). https://doi.org/10.1039/C2CS35325C

    Article  CAS  PubMed  Google Scholar 

  73. E. Flahaut, R. Bacsa, A. Peigney, C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem Commun 12, 1442 (2003). https://doi.org/10.1039/b301514a

    Article  CAS  Google Scholar 

  74. P.M. Ajayan, T.W. Ebbesen, Nanometre-size tubes of carbon. Rep. Prog. Phys. 60(10), 1025–1062 (1997). https://doi.org/10.1088/0034-4885/60/10/001

    Article  CAS  Google Scholar 

  75. A.K. Bhakta et al., Simultaneous formation of CuO nanoflowers and semi-spherical nanoparticles onto MWCNT surface. Emergent Mater 4(2), 403–411 (2021). https://doi.org/10.1007/s42247-021-00196-4

    Article  CAS  Google Scholar 

  76. N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. J Chem 2013, 1–18 (2013). https://doi.org/10.1155/2013/676815

    Article  CAS  Google Scholar 

  77. J. Chen, S. Wei, H. Xie, A Brief Introduction of Carbon Nanotubes: History, Synthesis, and Properties. J Phys Conf Ser 1948(1), 012184 (2021). https://doi.org/10.1088/1742-6596/1948/1/012184

    Article  CAS  Google Scholar 

  78. C. Journet et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644), 756–758 (1997). https://doi.org/10.1038/41972

    Article  CAS  Google Scholar 

  79. A.G. Rinzler et al., Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67(1), 29–37 (1998). https://doi.org/10.1007/s003390050734

    Article  CAS  Google Scholar 

  80. S. Licht, A. Douglas, J. Ren, R. Carter, M. Lefler, C.L. Pint, Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes. ACS Cent Sci 2(3), 162–168 (2016). https://doi.org/10.1021/acscentsci.5b00400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. M. Hu et al., Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodium-Ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods 4(1), 1900673 (2020). https://doi.org/10.1002/smtd.201900673

    Article  CAS  Google Scholar 

  82. Q. Tang et al., Binary Iron Sulfide as a Low-Cost and High-Performance Anode for Lithium-/Sodium-Ion Batteries. ACS Appl Mater Interfaces 12(47), 52888–52898 (2020). https://doi.org/10.1021/acsami.0c17728

    Article  CAS  PubMed  Google Scholar 

  83. P. Vijaya Kumar Saroja, M. Muruganathan, K. Muthusamy, H. Mizuta, R. Sundara, Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes. Nano Lett 18(9), 5688–5696 (2018). https://doi.org/10.1021/acs.nanolett.8b02275

    Article  CAS  PubMed  Google Scholar 

  84. Y. Sun et al., Hierarchical SnS2/carbon nanotube@reduced graphene oxide composite as an anode for ultra-stable sodium-ion batteries. Chemical Engineering Journal Advances 4, 100053 (2020). https://doi.org/10.1016/j.ceja.2020.100053

    Article  CAS  Google Scholar 

  85. R. Ding et al., ‘Carbon Anode Materials for Rechargeable Alkali Metal Ion Batteries and in-situ Characterization Techniques’. Front. Chem., vol. 8, (2020), https://doi.org/10.3389/fchem.2020.607504.

  86. B. Cong, X. Li, G. Chen, In situ N-doped carbon nanotubes modified NiS2 hierarchical hollow microspheres for boosting sodium storage performance. Chemical Engineering Journal 460, 141713 (2023). https://doi.org/10.1016/j.cej.2023.141713

    Article  CAS  Google Scholar 

  87. L. Kong et al., Interconnected CoS2/NC-CNTs network as high-performance anode materials for lithium-ion batteries. Sci China Mater 64(4), 820–829 (2021). https://doi.org/10.1007/s40843-020-1477-0

    Article  CAS  Google Scholar 

  88. N. Tammanoon et al., Synthesis of SnS2 nanoparticles@carbon nanotubes as anode for high-performance half/full sodium-ion batteries. Diam Relat Mater 136, 109903 (2023). https://doi.org/10.1016/j.diamond.2023.109903

    Article  CAS  Google Scholar 

  89. C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009

    Article  CAS  Google Scholar 

  90. Y. Chen et al., Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries. J Am Chem Soc 135(44), 16280–16283 (2013). https://doi.org/10.1021/ja408421n

    Article  CAS  PubMed  Google Scholar 

  91. Y. Zuo et al., The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chem. Eng. J. 415, 129053 (2021). https://doi.org/10.1016/j.cej.2021.129053

    Article  CAS  Google Scholar 

  92. R. Bagchi, M. Elshazly, J. N’Diaye, D. Yu, J.Y. Howe, K. Lian, Effects of Carboxyl Functionalized CNT on Electrochemical Behaviour of Polyluminol-CNT Composites. Chemistry (Easton) 4(4), 1561–1575 (2022). https://doi.org/10.3390/chemistry4040103

    Article  CAS  Google Scholar 

  93. V.Z. Poenitzsch, D.C. Winters, H. Xie, G.R. Dieckmann, A.B. Dalton, I.H. Musselman, Effect of Electron-Donating and Electron-Withdrawing Groups on Peptide/Single-Walled Carbon Nanotube Interactions. J Am Chem Soc 129(47), 14724–14732 (2007). https://doi.org/10.1021/ja0750827

    Article  CAS  PubMed  Google Scholar 

  94. K. Miyaura et al., Extended-conjugation π-electron systems in carbon nanotubes. Sci Rep 8(1), 8098 (2018). https://doi.org/10.1038/s41598-018-26379-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Z. Liu et al., Highly Reversible Sodiation/Desodiation from a Carbon-Sandwiched SnS 2 Nanosheet Anode for Sodium Ion Batteries. Nano Lett 20(5), 3844–3851 (2020). https://doi.org/10.1021/acs.nanolett.0c00964

    Article  CAS  PubMed  Google Scholar 

  96. Y. Ma et al., Cobalt Disulfide Nanoparticles Embedded in Porous Carbonaceous Micro-Polyhedrons Interlinked by Carbon Nanotubes for Superior Lithium and Sodium Storage. ACS Nano 12(7), 7220–7231 (2018). https://doi.org/10.1021/acsnano.8b03188

    Article  CAS  PubMed  Google Scholar 

  97. Q. Zhou et al., Sandwich-like cobalt sulfide–graphene composite – an anode material with excellent electrochemical performance for sodium ion batteries. RSC Adv 5(88), 71644–71651 (2015). https://doi.org/10.1039/C5RA12478F

    Article  CAS  Google Scholar 

  98. J.S. Cho, J.M. Won, J.-K. Lee, Y.C. Kang, Design and synthesis of multiroom-structured metal compounds–carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy 26, 466–478 (2016). https://doi.org/10.1016/j.nanoen.2016.06.012

    Article  CAS  Google Scholar 

  99. Y. Wu et al., Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage. Nanomicro Lett 12(1), 48 (2020). https://doi.org/10.1007/s40820-020-0391-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Y. Zhang et al., Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery. Chem. Eng. J. 343, 512–519 (2018). https://doi.org/10.1016/j.cej.2018.03.048

    Article  CAS  Google Scholar 

  101. C. Wu, Y. Jiang, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes. Adv. Mater. 28(33), 7276–7283 (2016). https://doi.org/10.1002/adma.201600964

    Article  CAS  PubMed  Google Scholar 

  102. Z. Li, W. Feng, Y. Lin, X. Liu, H. Fei, Flaky CoS 2 and graphene nanocomposite anode materials for sodium-ion batteries with improved performance. RSC Adv 6(74), 70632–70637 (2016). https://doi.org/10.1039/C6RA12563H

    Article  CAS  Google Scholar 

  103. X. Zhang, H. Wang, G. Wang, Cobalt sulfide nanoparticles anchored in three-dimensional carbon nanosheet networks for lithium and sodium ion batteries with enhanced electrochemical performance. J Colloid Interface Sci 492, 41–50 (2017). https://doi.org/10.1016/j.jcis.2016.12.071

    Article  CAS  PubMed  Google Scholar 

  104. V. Ganesan, D.-H. Kim, K.-H. Nam, C.-M. Park, Robust nanocube framework CoS2-based composites as high-performance anodes for Li- and Na-ion batteries. Compos. B. Eng. 231, 109592 (2022). https://doi.org/10.1016/j.compositesb.2021.109592

    Article  CAS  Google Scholar 

  105. H. Zhou, J. Hu, Facile synthesis of multi-walled carbon nanotubes/Co9S8 composites with enhanced performances for sodium-ion battery. Mater Lett 195, 26–30 (2017). https://doi.org/10.1016/j.matlet.2017.02.004

    Article  CAS  Google Scholar 

  106. M. Mortazavi, C. Wang, J. Deng, V.B. Shenoy, N.V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268, 279–286 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.049

    Article  CAS  Google Scholar 

  107. S.H. Choi, Y.N. Ko, J.-K. Lee, Y.C. Kang, 3D MoS 2 -Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties. Adv Funct Mater 25(12), 1780–1788 (2015). https://doi.org/10.1002/adfm.201402428

    Article  CAS  Google Scholar 

  108. J. Li, H. Wang, W. Wei, L. Meng, Advanced MoS 2 and graphene heterostructures as high-performance anode for sodium-ion batteries. Nanotechnology 30(10), 104003 (2019). https://doi.org/10.1088/1361-6528/aaf76c

    Article  CAS  PubMed  Google Scholar 

  109. R. Wang, S. Gao, K. Wang, M. Zhou, S. Cheng, K. Jiang, MoS2@rGO Nanoflakes as High Performance Anode Materials in Sodium Ion Batteries. Sci Rep 7(1), 7963 (2017). https://doi.org/10.1038/s41598-017-08341-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. D. Kong et al., Rational design of MoS 2 @graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 7(10), 3320–3325 (2014). https://doi.org/10.1039/C4EE02211D

    Article  CAS  Google Scholar 

  111. W. Li et al., Enhanced Sodium-Ion Storage Performance of a 2D MoS2 Anode Material Coated on Carbon Nanotubes. ChemElectroChem 8(5), 903–910 (2021). https://doi.org/10.1002/celc.202001486

    Article  CAS  Google Scholar 

  112. K.K. Halankar, B.P. Mandal, A.K. Tyagi, Superior electrochemical performance of MoS2 decorated on functionalized carbon nanotubes as anode material for sodium ion battery. Carbon Trends 5, 100103 (2021). https://doi.org/10.1016/j.cartre.2021.100103

    Article  CAS  Google Scholar 

  113. T. Zhou et al., Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS 2 to Orthorhombic-SnS. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c

    Article  CAS  PubMed  Google Scholar 

  114. Y. Cao et al., SnS 2 Nanosheets Anchored on Nitrogen and Sulfur Co-Doped MXene Sheets for High-Performance Potassium-Ion Batteries. ACS Appl Mater Interfaces 13(15), 17668–17676 (2021). https://doi.org/10.1021/acsami.1c02590

    Article  CAS  PubMed  Google Scholar 

  115. C. Rana, S. Saha, Fabrication and characterization of natural dye-sensitized solar cells based on tin sulfide nanoparticles. Emergent Mater 5(3), 945–955 (2022). https://doi.org/10.1007/s42247-021-00245-y

    Article  CAS  Google Scholar 

  116. Z. Li, J. Ding, D. Mitlin, Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. Acc Chem Res 48(6), 1657–1665 (2015). https://doi.org/10.1021/acs.accounts.5b00114

    Article  CAS  PubMed  Google Scholar 

  117. X. Zhang et al., SnS 2 Nanoflakes Anchored Graphene obtained by Liquid Phase Exfoliation and MoS 2 Nanosheet Composites as Lithium and Sodium Battery Anodes. Electrochim Acta 227, 203–209 (2017). https://doi.org/10.1016/j.electacta.2017.01.036

    Article  CAS  Google Scholar 

  118. P. Zheng et al., Scalable synthesis of SnS 2 /S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale 9(39), 14820–14825 (2017). https://doi.org/10.1039/C7NR06044K

    Article  CAS  PubMed  Google Scholar 

  119. D. Cheng et al., Nano-spatially confined and interface-controlled lithiation–delithiation in an in situ formed (SnS–SnS 2 –S)/FLG composite: a route to an ultrafast and cycle-stable anode for lithium-ion batteries. J Mater Chem A Mater 7(25), 15320–15332 (2019). https://doi.org/10.1039/C9TA03996A

    Article  CAS  Google Scholar 

  120. J. Ding et al., Integrating SnS 2 Quantum Dots with Nitrogen-Doped Ti 3 C 2 T x MXene Nanosheets for Robust Sodium Storage Performance. ACS Appl Energy Mater 4(1), 846–854 (2021). https://doi.org/10.1021/acsaem.0c02730

    Article  CAS  Google Scholar 

  121. Z. Yang et al., Hierarchical Carbon@SnS 2 Aerogel with “Skeleton/Skin” Architectures as a High-Capacity, High-Rate Capability and Long Cycle Life Anode for Sodium Ion Storage. ACS Appl Mater Interfaces 10(43), 37434–37444 (2018). https://doi.org/10.1021/acsami.8b14861

    Article  CAS  PubMed  Google Scholar 

  122. S. Zhang, H. Zhao, M. Wu, L. Yue, J. Mi, One-pot solvothermal synthesis 2D SnS2/CNTs hybrid as a superior anode material for sodium-ion batteries. J Alloys Compd 737, 92–98 (2018). https://doi.org/10.1016/j.jallcom.2017.11.389

    Article  CAS  Google Scholar 

  123. Y. Ren, J. Wang, X. Huang, J. Ding, Three-dimensional SnS2 flowers/carbon nanotubes network: Extraordinary rate capacity for sodium-ion battery. Mater Lett 186, 57–61 (2017). https://doi.org/10.1016/j.matlet.2016.09.089

    Article  CAS  Google Scholar 

  124. X. Wang et al., High-capacity and cycling-stable anode for sodium ion batteries constructed from SnS2/MWCNTs nanocomposites. J Alloys Compd 897, 163029 (2022). https://doi.org/10.1016/j.jallcom.2021.163029

    Article  CAS  Google Scholar 

  125. W. Kang, Y. Wang, J. Xu, Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J Mater Chem A Mater 5(17), 7667–7690 (2017). https://doi.org/10.1039/c7ta00003k

    Article  CAS  Google Scholar 

  126. A. Douglas, R. Carter, L. Oakes, K. Share, A.P. Cohn, C.L. Pint, Ultrafine Iron Pyrite (FeS 2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries. ACS Nano 9(11), 11156–11165 (2015). https://doi.org/10.1021/acsnano.5b04700

    Article  CAS  PubMed  Google Scholar 

  127. Z. Hu et al., Pyrite FeS 2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci 8(4), 1309–1316 (2015). https://doi.org/10.1039/C4EE03759F

    Article  CAS  Google Scholar 

  128. Y. Chen et al., High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 46, 117–127 (2018). https://doi.org/10.1016/j.nanoen.2018.01.039

    Article  CAS  Google Scholar 

  129. D. Chen et al., In situ nitrogenated graphene–few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale 5(17), 7890 (2013). https://doi.org/10.1039/c3nr02920d

    Article  CAS  PubMed  Google Scholar 

  130. D. Su, S. Dou, G. Wang, WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 50(32), 4192 (2014). https://doi.org/10.1039/c4cc00840e

    Article  CAS  Google Scholar 

  131. Y. Wang et al., Ice Templated Free-Standing Hierarchically WS 2 /CNT-rGO Aerogel for High-Performance Rechargeable Lithium and Sodium Ion Batteries. Adv Energy Mater 6(21), 1601057 (2016). https://doi.org/10.1002/aenm.201601057

    Article  CAS  Google Scholar 

  132. K. Shiva, H.S.S. Ramakrishna Matte, H.B. Rajendra, A.J. Bhattacharyya, C.N.R. Rao, Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy 2(5), 787–793 (2013). https://doi.org/10.1016/j.nanoen.2013.02.001

    Article  CAS  Google Scholar 

  133. S.H. Choi, Y.C. Kang, Sodium ion storage properties of WS 2 -decorated three-dimensional reduced graphene oxide microspheres. Nanoscale 7(9), 3965–3970 (2015). https://doi.org/10.1039/C4NR06880G

    Article  CAS  PubMed  Google Scholar 

  134. X. Li, J. Zhang, Z. Liu, C. Fu, C. Niu, WS2 nanoflowers on carbon nanotube vines with enhanced electrochemical performances for lithium and sodium-ion batteries. J Alloys Compd 766, 656–662 (2018). https://doi.org/10.1016/j.jallcom.2018.07.008

    Article  CAS  Google Scholar 

  135. P. Ge, H. Hou, X. Ji, Z. Huang, S. Li, L. Huang, Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater Chem Phys 203, 185–192 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.003

    Article  CAS  Google Scholar 

  136. J.-H. Choi, C.-W. Ha, H.-Y. Choi, H.-C. Shin, S.-M. Lee, High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries. Met. Mater. Int. 23(6), 1241–1249 (2017). https://doi.org/10.1007/s12540-017-7105-y

    Article  CAS  Google Scholar 

  137. Y. Zhu et al., High rate capability and superior cycle stability of a flower-like Sb 2 S 3 anode for high-capacity sodium ion batteries. Nanoscale 7(7), 3309–3315 (2015). https://doi.org/10.1039/C4NR05242K

    Article  CAS  PubMed  Google Scholar 

  138. J.-H. Choi et al., Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries. Electrochim Acta 210, 588–595 (2016). https://doi.org/10.1016/j.electacta.2016.05.190

    Article  CAS  Google Scholar 

  139. Z.-Z. Pan et al., Ionic Liquid-Assisted Preparation of Sb 2 S 3 /Reduced Graphene Oxide Nanocomposite for Sodium-Ion Batteries. Adv Mater Interfaces 5(5), 1701481 (2018). https://doi.org/10.1002/admi.201701481

    Article  CAS  Google Scholar 

  140. Q. Jiang, W. Qi Zhang, J. Chang Zhao, P. Hua Rao, J. Feng Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes. Int. J. Min., Metallurgy Mater. 28(7), 1194–1203 (2021). https://doi.org/10.1007/s12613-021-2259-5

    Article  CAS  Google Scholar 

  141. C. Ye, G. Meng, Z. Jiang, Y. Wang, G. Wang, L. Zhang, Rational Growth of Bi 2 S 3 Nanotubes from Quasi-two-dimensional Precursors. J Am Chem Soc 124(51), 15180–15181 (2002). https://doi.org/10.1021/ja0284512

    Article  CAS  PubMed  Google Scholar 

  142. J. Ni et al., Strongly Coupled Bi 2 S 3 @CNT Hybrids for Robust Lithium Storage. Adv Energy Mater 4(16), 1400798 (2014). https://doi.org/10.1002/aenm.201400798

    Article  CAS  Google Scholar 

  143. P. Kumari, K. Awasthi, S. Agarwal, T. Ichikawa, M. Kumar, A. Jain, Flower-like Bi 2 S 3 nanostructures as highly efficient anodes for all-solid-state lithium-ion batteries. RSC Adv 9(51), 29549–29555 (2019). https://doi.org/10.1039/C9RA05055H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. J. Bai et al., Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries. J Mater Sci Technol 50, 92–102 (2020). https://doi.org/10.1016/j.jmst.2020.01.045

    Article  CAS  Google Scholar 

  145. W. Yang, H. Wang, T. Liu, L. Gao, A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater Lett 167, 102–105 (2016). https://doi.org/10.1016/j.matlet.2015.12.108

    Article  CAS  Google Scholar 

  146. C. Wu, J. Maier, Y. Yu, Generalizable Synthesis of Metal-Sulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage. Adv. Mater. 28(1), 174–180 (2016). https://doi.org/10.1002/adma.201503969

    Article  CAS  PubMed  Google Scholar 

  147. X. Xu, S. Ji, M. Gu, J. Liu, In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. ACS Appl Mater Interfaces 7(37), 20957–20964 (2015). https://doi.org/10.1021/acsami.5b06590

    Article  CAS  PubMed  Google Scholar 

  148. X. Gao, X. Zhang, J. Jiang, J. Chen, Rod-like carbon-coated MnS derived from metal-organic frameworks as high-performance anode material for sodium-ion batteries. Mater Lett 228, 42–45 (2018). https://doi.org/10.1016/j.matlet.2018.05.077

    Article  CAS  Google Scholar 

  149. X. Ma et al., General and Scalable Fabrication of Core-Shell Metal Sulfides@C Anchored on 3D N-Doped Foam toward Flexible Sodium Ion Batteries. Small 15(45), 1903259 (2019). https://doi.org/10.1002/smll.201903259

    Article  CAS  Google Scholar 

  150. N. Zhang et al., MnS hollow microspheres combined with carbon nanotubes for enhanced performance sodium-ion battery anode. Chin. Chem. Lett. 31(5), 1221–1225 (2020). https://doi.org/10.1016/j.cclet.2019.09.050

    Article  CAS  Google Scholar 

  151. H. Kim et al., Simple and scalable synthesis of CuS as an ultrafast and long-cycling anode for sodium ion batteries. J Mater Chem A Mater 7(27), 16239–16248 (2019). https://doi.org/10.1039/C9TA04640B

    Article  CAS  Google Scholar 

  152. C. An, Y. Ni, Z. Wang, X. Li, X. Liu, Facile fabrication of CuS microflower as a highly durable sodium-ion battery anode. Inorg Chem Front 5(5), 1045–1052 (2018). https://doi.org/10.1039/C8QI00117K

    Article  CAS  Google Scholar 

  153. Y. Xiao et al., CuS Microspheres with Tunable Interlayer Space and Micropore as a High-Rate and Long-Life Anode for Sodium-Ion Batteries. Adv Energy Mater 8(22), 1800930 (2018). https://doi.org/10.1002/aenm.201800930

    Article  CAS  Google Scholar 

  154. N.R. Kim et al., Conversion Reaction of Copper Sulfide Based Nanohybrids for Sodium-Ion Batteries. ACS Sustain Chem Eng 5(11), 9802–9808 (2017). https://doi.org/10.1021/acssuschemeng.7b01692

    Article  CAS  Google Scholar 

  155. Y. Chen et al., Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery. Chin. Chem. Lett. 29(1), 187–190 (2018). https://doi.org/10.1016/j.cclet.2017.06.019

    Article  CAS  Google Scholar 

  156. S. Zhang, H. Zhao, L. Yue, Z. Wang, J. Mi, Fixed-bed assisted synthesis SnO2/SnS2/CNTs composite for enhanced sodium storage performance. J Alloys Compd 717, 127–135 (2017). https://doi.org/10.1016/j.jallcom.2017.05.055

    Article  CAS  Google Scholar 

  157. M. Li et al., Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials 9(9), 1323 (2019). https://doi.org/10.3390/nano9091323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Y. Liu et al., Turbostratic carbon-localised FeS 2 nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale 11(33), 15497–15507 (2019). https://doi.org/10.1039/C9NR05594K

    Article  CAS  PubMed  Google Scholar 

  159. J. Wang, D. Cao, G. Yang, Y. Yang, H. Wang, Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries. J. Solid State Electrochem. 21(10), 3047–3055 (2017). https://doi.org/10.1007/s10008-017-3600-9

    Article  CAS  Google Scholar 

  160. A. Fan et al., One-Pot Hydrothermal Synthesis of ZnS Nanospheres Anchored on 3D Conductive MWCNTs Networks as High-Rate and Cold-Resistant Anode Materials for Sodium-Ion Batteries. ChemElectroChem 7(8), 1904–1913 (2020). https://doi.org/10.1002/celc.202000204

    Article  CAS  Google Scholar 

  161. F. Han, C.Y.J. Tan, Z. Gao, A Dual-Carbon Phase-Modified and Nanostructured Nickel Sulfide Anode for Sodium-Ion Batteries. Energ. Technol. 5(4), 580–587 (2017). https://doi.org/10.1002/ente.201600393

    Article  CAS  Google Scholar 

  162. S. Fan et al., Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Mater 23, 17–24 (2019). https://doi.org/10.1016/j.ensm.2019.05.043

    Article  Google Scholar 

  163. Y. Xiao, J.-Y. Hwang, I. Belharouak, Y.-K. Sun, Na Storage Capability Investigation of a Carbon Nanotube-Encapsulated Fe 1–x S Composite. ACS Energy Lett 2(2), 364–372 (2017). https://doi.org/10.1021/acsenergylett.6b00660

    Article  CAS  Google Scholar 

  164. S. Zhang, L. Yue, H. Zhao, Z. Wang, J. Mi, Mwcnts wrapped flower-like SnS composite as anode material for sodium-ion battery. Mater Lett 209, 212–215 (2017). https://doi.org/10.1016/j.matlet.2017.07.108

    Article  CAS  Google Scholar 

  165. T. Wu, M. Jing, Y. Liu, X. Ji, Binding low crystalline MoS 2 nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage. J Mater Chem A Mater 7(11), 6439–6449 (2019). https://doi.org/10.1039/C9TA00123A

    Article  CAS  Google Scholar 

  166. D. Liu et al., Hierarchical microstructure of CNTs interwoven ultrathin Co3S4 nanosheets as a high performance anode for sodium-ion battery. Ceram Int 45(3), 3591–3599 (2019). https://doi.org/10.1016/j.ceramint.2018.11.019

    Article  CAS  Google Scholar 

  167. Z. Shadike, M.-H. Cao, F. Ding, L. Sang, Z.-W. Fu, Improved electrochemical performance of CoS 2 –MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. 51(52), 10486–10489 (2015). https://doi.org/10.1039/C5CC02564H

    Article  CAS  Google Scholar 

  168. H. Li, M. Zhou, W. Li, K. Wang, S. Cheng, K. Jiang, Layered SnS 2 cross-linked by carbon nanotubes as a high performance anode for sodium ion batteries. RSC Adv 6(42), 35197–35202 (2016). https://doi.org/10.1039/C6RA04941A

    Article  CAS  Google Scholar 

  169. X. Xu et al., MoS 2 nanosheets grown on amorphous carbon nanotubes for enhanced sodium storage. J Mater Chem A Mater 4(12), 4375–4379 (2016). https://doi.org/10.1039/C6TA00068A

    Article  CAS  Google Scholar 

  170. T.S. Sahu, Q. Li, J. Wu, V.P. Dravid, S. Mitra, Exfoliated MoS 2 nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage. J Mater Chem A Mater 5(1), 355–363 (2017). https://doi.org/10.1039/C6TA07390E

    Article  CAS  Google Scholar 

  171. F. Han, C. Zhang, B. Sun, W. Tang, J. Yang, X. Li, Dual-carbon phase-protective cobalt sulfide nanoparticles with cable-type and mesoporous nanostructure for enhanced cycling stability in sodium and lithium ion batteries. Carbon N Y 118, 731–742 (2017). https://doi.org/10.1016/j.carbon.2017.03.038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yathavan Subramanian: conceptualization, writing (original draft preparation), writing (review and editing),

Anitha Dhanasekaran: writing (original draft preparation),

Lukman Ahmed Omeiza: writing (original draft preparation),

Veena R: Visualization,

Hayati Y: Visualization,

Mahendra Rao Somalu: writing (review and editing),

Shammya Afroze: writing (review and editing),

Abul Kalam Azad: critical revision, supervision;

Corresponding author

Correspondence to Abul Kalam Azad.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, Y., Dhanasekaran, A., Omeiza, L.A. et al. A review on applications of carbon nanotubes-based metal-sulfide composite anode materials (CNTs/MS) for sodium (Na)-ion batteries. emergent mater. 7, 357–385 (2024). https://doi.org/10.1007/s42247-023-00501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00501-3

Keywords

Navigation