Skip to main content

Advertisement

Log in

TiNb2O7/carbon nanotube composites as long cycle life anode for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

TiNb2O7/carbon nanotubes composite (TNO/CNTs) was successfully synthesized by ultrasonic dispersion and a facile solvothermal method. Its physical properties were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning microscopy (SEM). As the anode material of sodium ion battery, its electrochemical performances including cyclic voltammograms (CVs), electrochemical impedance spectra (EIS), and galvanostatic charge-discharge cycles were detected and analyzed for the first time. Compared with pure TiNb2O7, a high-reversible capacity reaches 261.1 mAh g−1 at 50 mA g−1 after 200 cycles. In addition, a prominent rate capability maintains ~ 110 mAh g−1 at 500 mA g−1 with over 1000 cycles. The improvements have been explained by the corresponding kinetics analysis which demonstrates that the pseudocapacitive behavior in TNO/CNTs contributes a lot to the enhanced sodium storage capacities and rate performance. The results show the great potential of TNO/CNTs composites for sodium-ion battery with a long cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y, Chen R, Chen T, Lv H, Zhu G, Ma L, Wang C, Jin Z, Liu J (2016) Emerging non-lithium ion batteries. Energy Storage Mater 4:103–129

    Article  Google Scholar 

  2. Kang H, Liu Y, Cao K, Zhao Y, Jiao L, Wang Y, Yuan H (2015) Update on anode materials for Na-ion batteries. J Mater Chem A 3(35):17899–17913

    Article  CAS  Google Scholar 

  3. Sun Y, Guo S, Zhou H (2018) Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater :1800212

  4. Su H, Jaffer S, Yu H (2016) Transition metal oxides for sodium-ion batteries. Energy Storage Mater 5:116–131

    Article  Google Scholar 

  5. Han J-T, Huang Y-H, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23(8):2027–2029

    Article  CAS  Google Scholar 

  6. Song H, Kim YT (2015) A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution. Chem Commun 51(48):9849–9852

    Article  CAS  Google Scholar 

  7. Guo B, Yu X, Sun X-G, Chi M, Qiao Z-A, Liu J, Hu Y-S, Yang X-Q, Goodenough JB, Dai S (2014) A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ Sci 7(7):2220–2226

    Article  CAS  Google Scholar 

  8. Tang K, Mu X, van Aken PA, Yu Y, Maier J (2013) “Nano-pearl-string” TiNb2O7 as anodes for rechargeable lithium batteries. Adv Energy Mater 3(1):49–53

    Article  CAS  Google Scholar 

  9. Wei S, Wang X, Liu M, Zhang R, Wang G, Hu H (2018) Spherical FeF3•0.33H2O/MWCNTs nanocomposite with mesoporous structure as cathode material of sodium ion battery. J Energy Chem 27(2):573–581

  10. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K-H (2018) Carbon nanotubes: a potential material for energy conversion and storage. Prog Energy Combust Sci 64:219–253

    Article  Google Scholar 

  11. Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8(22):14150–14159

    Article  CAS  PubMed  Google Scholar 

  12. Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5(9):2318–2328

    Article  CAS  Google Scholar 

  13. Luo Q, Ma H, Hao F, Hou Q, Ren J, Wu L, Yao Z, Zhou Y, Wang N, Jiang K (2017) Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv Funct Mater 27(42):1703068

    Article  CAS  Google Scholar 

  14. Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J, Zhang X, Guo J, Shankar A, Li J, Fan R, Cao D, Guo Z (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57

    Article  CAS  Google Scholar 

  15. He Y, Yang S, Liu H, Shao Q, Chen Q, Lu C, Jiang Y, Liu C, Guo Z (2018) Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties. J Colloid Interface Sci 517:40–51

    Article  CAS  PubMed  Google Scholar 

  16. Wu N, Liu C, Xu D, Liu J, Liu W, Shao Q, Guo Z (2018) Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain Chem Eng 6(9):12471–12480

    Article  CAS  Google Scholar 

  17. Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C (2018) Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J Mater Chem C 6(9):2258–2269

    Article  CAS  Google Scholar 

  18. Wu Z, Gao S, Chen L, Jiang D, Shao Q, Zhang B, Zhai Z, Wang C, Zhao M, Ma Y (2017) Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@MWCNTs and montmorillonite bifillers. Macromol Chem Phys 218(23):1700357

    Article  CAS  Google Scholar 

  19. Jian Z, Liu P, Li F, Chen M, Zhou H (2014) Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J Mater Chem A 2(34):13805

    Article  CAS  Google Scholar 

  20. Huang Y, Li X, Luo J, Wang K, Zhang Q, Qiu Y, Sun S, Liu S, Han J, Huang Y (2017) Enhancing sodium-ion storage behaviors in TiNb2O7 by mechanical ball milling. ACS Appl Mater Interfaces 9(10):8696–8703

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Cao X, Schmidt CN, Xu Q, Uchaker E, Pei Y, Cao G (2016) TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries. J Mater Chem A 4(11):4242–4251

    Article  CAS  Google Scholar 

  22. Xu Y, Memarzadeh Lotfabad E, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49(79):8973–8975

    Article  CAS  Google Scholar 

  23. Xie K, Wei W, Yu H, Deng M, Ke S, Zeng X, Li Z, Shen C, J-g W, Wei B (2016) Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. RSC Adv 6(42):35746–35750

    Article  CAS  Google Scholar 

  24. Lou X, Lin C, Luo Q, Zhao J, Wang B, Li J, Shao Q, Guo X, Wang N, Guo Z (2017) Crystal structure modification enhanced FeNb11O29 anodes for Lithium-ion batteries. ChemElectroChem 4:3171–3180

    Article  CAS  Google Scholar 

  25. Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q, Li J, Wang N, Guo Z (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72

    Article  CAS  Google Scholar 

  26. Noh H, Choi W (2016) Preparation of a TiNb2O7 microsphere using formic acid and wrapping with reduced graphene oxide for anodes in Lithium ion batteries. J Electrochem Soc 163(6):A1042–A1049

    Article  CAS  Google Scholar 

  27. Fu C, Chen T, Qin W, Lu T, Sun Z, Xie X, Pan L (2015) Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries. Ionics 22(4):555–562

    Article  CAS  Google Scholar 

  28. Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L (2016) A hierarchical N/S-Codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6(6):1501929

    Article  CAS  Google Scholar 

  29. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12(7):3783–3787

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Hu X, Evanko B, Sun X, Li X, Hou T, Cai S, Zheng C, Hu W, Stucky GD (2018) High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 46:117–127

    Article  CAS  Google Scholar 

  31. Das S, Swain D, Araujo RB, Shi S, Ahuja R, Row TNG, Bhattacharyya AJ (2018) Alloying in an intercalation host: metal titanium niobates as anodes for rechargeable alkali-ion batteries. Chem Asian J 13(3):299–310

    Article  CAS  PubMed  Google Scholar 

  32. Bauer D, Roberts AJ, Patnaik SG, Brett DJL, Shearing PR, Kendrick E, Matsumi N, Darr JA (2018) High power sodium-ion batteries and hybrid electrochemical capacitors using Mo or Nb-doped nano-titania anodes. J Electrochem Soc 165(9):A1662–A1670

    Article  CAS  Google Scholar 

  33. Zhao F, Wang B, Tang Y, Ge H, Huang Z, Liu HK (2015) Niobium doped anatase TiO2 as an effective anode material for sodium-ion batteries. J Mater Chem A 3(45):22969–22974

    Article  CAS  Google Scholar 

  34. Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124(10):1569–1578

    Article  CAS  Google Scholar 

  35. Böckenfeld N, Balducci A (2014) Determination of sodium ion diffusion coefficients in sodium vanadium phosphate. J Solid State Electrochem 18(4):959–964

    Article  CAS  Google Scholar 

  36. Zhang J, Zhang K, Yang J, Lee G-H, Shin J, Wing-hei Lau V, Kang Y-M (2018) Bifunctional conducting polymer coated CoP Core-Shell nanowires on carbon paper as a free-standing anode for sodium ion batteries. Adv Energy Mater 8(20):1800283

    Article  CAS  Google Scholar 

  37. Talaie E, Bonnick P, Sun X, Pang Q, Liang X, Nazar LF (2016) Methods and protocols for electrochemical energy storage materials research. Chem Mater 29(1):90–105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJ1709217) and the Scientific Research Innovation Team of Chongqing University of Technology (No. cqut2015srim).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebu Hu.

Electronic supplementary material

ESM 1

(DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, B., Peng, Q., Jiao, X. et al. TiNb2O7/carbon nanotube composites as long cycle life anode for sodium-ion batteries. Ionics 25, 1679–1688 (2019). https://doi.org/10.1007/s11581-018-2784-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2784-z

Keywords

Navigation