Skip to main content

Advertisement

Log in

Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We demonstrate a general solid-state synthesis of nickel sulfide (NiS) and carbon-based composites (NiS/C) via simple thermal decomposition of nickel dibutyldithiocarbamate (C18H36N2NiS4) under ambient atmosphere, which can be applied to various carbon-based materials such as 2D graphene nanosheets (GNSs), 1D carbon nanotubes (CNTs), and 0D carbon black (CB). When used as anode materials for sodium-ion batteries (SIBs), the as-prepared NiS/C composites demonstrate excellent sodium storage properties including superior cycle stability and rate capability, delivering reversible capacities of 483 (for NiS/GNSs), 394 (for NiS/CNTs), and 413 mAh/g (for NiS/CB) at a current density of 200 mA/g after 100 cycles, respectively, which are much higher than that of the bare NiS counterpart (136 mAh/g at 200 mA/g after 100 cycles). Moreover, reversible capacities of 372 mAh/g for NiS/GNSs, 331 mAh/g for NiS/CNTs, and 317 mAh/g for NiS/CB are realized at a high rate of 2 A/g. The excellent electrochemical performance can be attributed to the introduction of the carbon-based materials, which not only serve as efficient buffering matrixes to tolerate the volume changes of NiS upon sodiation/desodiation but also improve the electrode conductivity. More importantly, this work provides a straightforward and general synthetic approach for designing various NiS/C composites as high-performance anodes for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  2. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  CAS  Google Scholar 

  3. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276(5317):1395–1397

    Article  CAS  Google Scholar 

  4. Wang H, Xi L, Tucek J, Ma C, Yang G, Leung MKH, Zboril R, Niu C, Rogach AL (2014) Synthesis and characterization of tin Titanate nanotubes: precursors for nanoparticulate Sn-doped TiO2 anodes with synergistically improved electrochemical performance. ChemElectroChem 1(9):1563–1569

    Article  CAS  Google Scholar 

  5. Wang H, Wu Q, Cao D, Lu X, Wang J, Leung MKH, Cheng S, Lu L, Niu C (2016) Synthesis of SnSb-embedded carbon-silica fibers via electrospinning: effect of TEOS on structural evolutions and electrochemical properties. Materials Today Energy 1-2:24–32

    Article  Google Scholar 

  6. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721

    Article  CAS  Google Scholar 

  7. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884

    Article  CAS  Google Scholar 

  8. Pan Q, Xie J, Zhu T, Cao G, Zhao X, Zhang S (2014) Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties. Inorg Chem 53(7):3511–3518

    Article  CAS  Google Scholar 

  9. Wang T, Hu P, Zhang C, Du H, Zhang Z, Wang X, Chen S, Xiong J, Cui G (2016) Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl Mater Interfaces 8(12):7811–7817

    Article  CAS  Google Scholar 

  10. Qin W, Chen T, Lu T, Chua DHC, Pan L (2016) Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. J Power Sources 302:202–209

    Article  CAS  Google Scholar 

  11. Aso K, Hayashi A, Tatsumisago M (2012) Synthesis of NiS–carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries. Electrochim Acta 83:448–453

    Article  CAS  Google Scholar 

  12. Pan Q, Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Adv 3(12):3899

    Article  CAS  Google Scholar 

  13. Son MY, Choi JH, Kang YC (2014) Electrochemical properties of bare nickel sulfide and nickel sulfide–carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries. J Power Sources 251:480–487

    Article  CAS  Google Scholar 

  14. Wang Y, Zhu Q, Tao L, Su X (2011) Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries. J Mater Chem 21(25):9248

    Article  CAS  Google Scholar 

  15. Zhang Z, Zhao H, Zeng Z, Gao C, Wang J, Xia Q (2015) Hierarchical architectured NiS@SiO2 nanoparticles enveloped in graphene sheets as anode material for lithium ion batteries. Electrochim Acta 155:85–92

    Article  CAS  Google Scholar 

  16. Chuang H-M, Li C-T, Yeh M-H, Lee C-P, Vittal R, Ho K-C (2014) A coral-like film of Ni@NiS with core–shell particles for the counter electrode of an efficient dye-sensitized solar cell. J Mater Chem A 2(16):5816

    Article  CAS  Google Scholar 

  17. Ke W, Fang G, Tao H, Qin P, Wang J, Lei H, Liu Q, Zhao X (2014) In situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 6(8):5525–5530

    Article  CAS  Google Scholar 

  18. Li Y, Wang H, Zhang H, Liu P, Wang Y, Fang W, Yang H, Li Y, Zhao H (2014) A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity. Chem Commun 50(42):5569–5571

    Article  CAS  Google Scholar 

  19. Peng L, Ji X, Wan H, Ruan Y, Xu K, Chen C, Miao L, Jiang J (2015) Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim Acta 182:361–367

    Article  CAS  Google Scholar 

  20. Sun C, Ma M, Yang J, Zhang Y, Chen P, Huang W, Dong X (2014) Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Scientific Reports 4:7054

    Article  CAS  Google Scholar 

  21. Wang A, Wang H, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y (2013) Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl Surf Sci 282:704–708

    Article  CAS  Google Scholar 

  22. Yan X, Tong X, Ma L, Tian Y, Cai Y, Gong C, Zhang M, Liang L (2014) Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Mater Lett 124:133–136

    Article  CAS  Google Scholar 

  23. Yang J, Duan X, Guo W, Li D, Zhang H, Zheng W (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 5:74–81

    Article  CAS  Google Scholar 

  24. Geng H, Kong SF, Wang Y (2014) NiS nanorod-assembled nanoflowers grown on graphene: morphology evolution and Li-ion storage applications. J Mater Chem A 2(36):15152–15158

    Article  CAS  Google Scholar 

  25. Wang YX, Yang J, Chou SL, Liu HK, Zhang WX, Zhao D, Dou SX (2015) Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat Commun 6:8689

    Article  CAS  Google Scholar 

  26. Sun R, Wei Q, Li Q, Luo W, An Q, Sheng J, Wang D, Chen W, Mai L (2015) Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery. ACS Appl Mater Interfaces 7(37):20902–20908

    Article  CAS  Google Scholar 

  27. Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25(12):1780–1788

    Article  CAS  Google Scholar 

  28. Wang Z, Li X, Yang Y, Cui Y, Pan H, Wang Z, Chen B, Qian G (2014) Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J Mater Chem A 2(21):7912

    Article  CAS  Google Scholar 

  29. Zhang L, Huang Y, Zhang Y, Gu H, Fan W, Liu T (2016) Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage. Adv Mater Interfaces 3(2):1500467

    Article  Google Scholar 

  30. Li Y, Lu X, Wang H, Xie C, Yang G, Niu C (2015) Growth of ultrafine SnO2 nanoparticles within multiwall carbon nanotube networks: non-solution synthesis and excellent electrochemical properties as anodes for lithium ion batteries. Electrochim Acta 178:778–785

    Article  CAS  Google Scholar 

  31. Wang J, Xie S, Cao D, Lu X, Meng L, Yang G, Wang H (2016) Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries. J Nanopart Res 18(9)

  32. Park GD, Cho JS, Kang YC (2015) Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nano 7(40):16781–16788

    CAS  Google Scholar 

  33. Ryu H-S, Kim J-S, Park J, Park J-Y, Cho G-B, Liu X, Ahn I-S, Kim K-W, Ahn J-H, Ahn J-P, Martin SW, Wang G, Ahn H-J (2013) Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying. J Power Sources 244:764–770

    Article  CAS  Google Scholar 

  34. Go D-Y, Park J, Noh P-J, Cho G-B, Ryu H-S, Nam T-H, Ahn H-J, Kim K-W (2014) Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries. Mater Res Bull 58:190–194

    Article  CAS  Google Scholar 

  35. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7):2118–2122

    Article  CAS  Google Scholar 

  36. Potts JR, Murali S, Zhu Y, Zhao X, Ruoff RS (2011) Microwave-exfoliated graphite oxide/polycarbonate composites. Macromolecules 44(16):6488–6495

    Article  CAS  Google Scholar 

  37. Maiti UN, Lim J, Lee KE, Lee WJ, Kim SO (2014) Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv Mater 26(4):615–619 505

    Article  CAS  Google Scholar 

  38. Zhang D, Sun W, Zhang Y, Dou Y, Jiang Y, Dou SX (2016) Engineering hierarchical hollow nickel sulfide spheres for high-performance sodium storage. Adv Funct Mater 26(41):7479–7485

    Article  CAS  Google Scholar 

  39. Legrand DL, Nesbitt HW, Bancroft GM (1998) X-ray photoelectron spectroscopic study of a pristine millerite (NiS) surface and the effect of air and water oxidation. Am Mineral 83(11–12 Part 1):1256–1265

    Article  CAS  Google Scholar 

  40. Wang Q, Gao R, Li J (2007) Porous, self-supported Ni3S2∕Ni nanoarchitectured electrode operating through efficient lithium-driven conversion reactions. Appl Phys Lett 90(14):143107

    Article  Google Scholar 

  41. Goh SW, Buckley AN, Lamb RN, Skinner WM, Pring A, Wang H, Fan L-J, Jang L-Y, Lai L-J, Yang Y-W (2006) Sulfur electronic environments in α-NiS and β-NiS: examination of the relationship between coordination number and core electron binding energies. Phys Chem Miner 33(2):98–105

    Article  CAS  Google Scholar 

  42. Liu Y, Zhang N, Yu C, Jiao L, Chen J (2016) MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett 16(5):3321–3328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 51402232 and 51521065) and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, Grant No. 2016-skllmd-04). The authors also thanks Ms. Yanzhu Dai and Mr. Chuansheng Ma for their help with SEM/TEM measurements, carried out at the International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaodong Yang or Hongkang Wang.

Electronic supplementary material

ESM 1

(DOCX 5850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cao, D., Yang, G. et al. Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries. J Solid State Electrochem 21, 3047–3055 (2017). https://doi.org/10.1007/s10008-017-3600-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3600-9

Keywords

Navigation