Skip to main content
Log in

High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries

  • Research Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J. M. Tarascon, Nature 451, 652 (2008).

    Article  Google Scholar 

  2. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Edit. 47, 2930 (2008).

    Article  Google Scholar 

  3. J. M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  Google Scholar 

  4. B. Dunn, H. Kamath, and J. M. Tarascon, Science 334, 928 (2012).

    Article  Google Scholar 

  5. Z. Yang, J. Zhang, M. Kintner-Meyer, X. Lu, D. Choi, J P. Lemmon, et al. Chem. Rev. 111, 3577 (2011).

    Article  Google Scholar 

  6. C.-M. Park, J.-H. Kim, H. Kim, and H.-J. Sohn, Chem. Soc. Rev. 39, 3115 (2010).

    Article  Google Scholar 

  7. B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010).

    Article  Google Scholar 

  8. M. S. Whittingham, Chem. Rev. 104, 4271 (2004).

    Article  Google Scholar 

  9. C. Grosjean, P. H. Miranda, M. Perrin, and P. Poggi, Renew. Sust. Energ. Rev. 16, 1735 (2012).

    Article  Google Scholar 

  10. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev. 114, 11636 (2014).

    Article  Google Scholar 

  11. M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, Adv. Funct. Mater. 23, 947 (2013).

    Article  Google Scholar 

  12. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, S. Komaba, et al. Nat. Mater. 11, 512 (2012).

    Article  Google Scholar 

  13. S. W. Kim, D. H. Seo, X. Ma, G. Ceder, and K. Kang, Adv. Energy Mater. 2, 710 (2012).

    Article  Google Scholar 

  14. S. Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, and K. T. Lee, Energ. Environ. Sci. 6, 2067 (2013).

    Article  Google Scholar 

  15. H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, H. Yuan, et al. J. Mater. Chem. A 3, 17899 (2015).

    Article  Google Scholar 

  16. F. Sauvage, L. Laffont, J. M. Tarascon, and E. Baudrin, Inorg. Chem. 46, 3289 (2007).

    Article  Google Scholar 

  17. Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Liu, et al. Nano Lett. 2, 3783 (2012).

    Article  Google Scholar 

  18. M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, and S. Komaba, Phys. Chem. Chem. Phys. 16, 15007 (2014).

    Article  Google Scholar 

  19. J. Qian, X. Wu, Y. Cao, X. Ai, and H. Yang, Angew. Chem. Int. Ed. 52, 4731 (2013).

    Article  Google Scholar 

  20. A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, J. Am. Chem. Soc. 134, 20805 (2012).

    Article  Google Scholar 

  21. J. Qian, Y. Chem, L. Wu, Y. Cao, X. Ai, and H. Yang, Chem. Commun. 48, 7070 (2012).

    Article  Google Scholar 

  22. H. Hou, Y. Yang, Y. Zhu, M. Jing, C. Pan, X. Ji, et al. Electrochim. Acta 146, 328 (2014).

    Article  Google Scholar 

  23. L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, Y. Cao, et al. Energy Environ. Sci. 7, 323 (2014).

    Article  Google Scholar 

  24. Y. Zhu, X. Han, Y. Xu, Y. Lu, S. Zheng, C. Wang, et al. ACS Nano. 7, 6378 (2013).

    Article  Google Scholar 

  25. H. Hou, M. Jing, Y. Yang, Y. Zhang, Y. Zhu, X. Ji, et al. J. Mater. Chem. A 3 2971 (2015).

    Article  Google Scholar 

  26. Y. Zhu, P. Nie, L. Shen, S. Dong, Q. Sheng, X. Zhang, et al. Nanoscale 7, 3309 (2015).

    Article  Google Scholar 

  27. D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, O. Lev, et al. Nat. Commun. 4, 2922 (2013).

    Google Scholar 

  28. H. Lu, L. Wu, L. Xiao, X. Ai, H. Yang, and Y. Cao, Electrochim. Acta 190, 402 (2016).

    Article  Google Scholar 

  29. L. Baggetto, P. Ganesh, C.-N. Sun, R. A. Meisner, T. A. Zawodzinski, and G. M. Veith, J. Mater. Chem. A 1, 7985 (2013).

    Article  Google Scholar 

  30. L. Bodenes, A. Darwiche, L. Monconduit, and H. Martinez, J. Power Sources 273, 14 (2015).

    Article  Google Scholar 

  31. Y. Kim, Y. Park, A. Choi, N.-S. Choi, J. Kim, K. T. Lee, et al. Adv. Mater. 25, 3045 (2013).

    Article  Google Scholar 

  32. Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, K. T. Lee, et al. Adv. Mater. 26, 4139 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heon-Cheol Shin or Sang-Min Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JH., Ha, CW., Choi, HY. et al. High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries. Met. Mater. Int. 23, 1241–1249 (2017). https://doi.org/10.1007/s12540-017-7105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7105-y

Keywords

Navigation