Skip to main content
Log in

Carbon nanotubes enhanced Sb6O13 as a new anode material for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sb6O13/carbon nanotube (Sb6O13/CNT) composite prepared via a facile method has been evaluated as anode material for sodium-ion batteries. Its physical properties were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Its electrochemical characteristics were studied via cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and galvanostatic charge/discharge. Compared with Sb6O13, Sb6O13/CNTs showed an obviously enhanced electrochemical performance with an initial discharge capacity of 1048.7 mA h g−1, a reversible capacity of 308.7 mA h g−1 at 100 mA g−1 after 350 cycles. Even at 1000 mA g−1, a capacity of 158 mA h g−1 was obtained for Sb6O13/CNTs compared to 47 mA h g−1 of Sb6O13, which showed a good rate performance of Sb6O13/CNTs. In addition, the calculated sodium-ion diffusion coefficients of Sb6O13/CNTs reached 6.70 × 10−14 cm2 s−1, which was almost 47 times as much as that of Sb6O13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Su H, Jaffer S, Yu H (2016) Transition metal oxides for sodium-ion batteries. Energy Storage Mater 5:116–131

    Article  Google Scholar 

  2. Li Y, Lu Y, Zhao C, Hu YS, Titirici MM, Li H, Huang X, Chen L (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151

    Article  Google Scholar 

  3. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240

    Article  CAS  PubMed  Google Scholar 

  4. Wang GZ, Feng JM, Dong L, Li XF, Li DJ (2017) Antimony (IV) oxide nanorods/reduced graphene oxide as the anode material of sodium-ion batteries with excellent electrochemical performance. Electrochim Acta 240:203–214

    Article  CAS  Google Scholar 

  5. Wang GZ, Feng JM, Dong L, Li XF, Li DJ (2017) Porous graphene anchored with Sb/SbOx as sodium-ion battery anode with enhanced reversible capacity and cycle performance. J Alloys Compd 693:141–149

    Article  CAS  Google Scholar 

  6. Wan F, Lü HY, Zhang XH, Liu DH, Zhang JP, He X, Wu XL (2016) The in-situ -prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries. J Alloys Compd 672:72–78

    Article  CAS  Google Scholar 

  7. Zhou X, Zhang Z, Xu X, Yan J, Ma G, Lei Z (2016) Anchoring Sb6O13 nanocrystals on graphene sheets for enhanced lithium storage. ACS Appl Mater Interfaces 8:35398–35406

    Article  CAS  PubMed  Google Scholar 

  8. Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5:2318–2328

    Article  CAS  Google Scholar 

  9. Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159

    Article  CAS  PubMed  Google Scholar 

  10. Liu H, Huang W, Yang X, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites. J Mater Chem C 4:4459–4469

    Article  CAS  Google Scholar 

  11. Liu H, Li Y, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J Mater Chem C 4:157–166

    Article  CAS  Google Scholar 

  12. Liu T, Yu K, Gao L, Chen H, Wang N, Hao L, Li T, He H, Guo Z (2017) A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J Mater Chem A 5:17848–17855

    Article  CAS  Google Scholar 

  13. Du H, Zhao CX, Lin J, Guo J, Wang B, Hu Z, Shao Q, Pan D, Wujcik EK, Guo Z (2018) Carbon nanomaterials in direct liquid fuel cells. Chem Rec 18:1365–1372

    Article  CAS  PubMed  Google Scholar 

  14. Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q, Li J, Wang N, Guo Z (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72

    Article  CAS  Google Scholar 

  15. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim BS, Hammond PT, Shao Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Wu M, Jiao Z, Lee JY (2009) Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem Mater 21:3210–3215

    Article  CAS  Google Scholar 

  17. Wang W, Kumta PN (2010) Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4:2233–2241

    Article  CAS  PubMed  Google Scholar 

  18. Li WJ, Chou SL, Wang JZ, Liu HK, Dou SX (2013) Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett 13:5480–5484

    Article  CAS  PubMed  Google Scholar 

  19. Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Vijaya N, Araichimani A, Sanjeeviraja C (2015) Preparation and characterization of PVA complexed with amino acid, proline. Ionics 21:387–399

    Article  CAS  Google Scholar 

  20. Li W, Wang KL, Cheng SJ, Jiang K (2017) Two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. J Mater Chem A 5:1160–1167

    Article  CAS  Google Scholar 

  21. Li N, Liao S, Sun Y, Song HW, Wang CX (2015) Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability. J Mater Chem A 3:5820–5828

    Article  CAS  Google Scholar 

  22. Zhou X, Liu X, Xu Y, Liu Y, Dai Z, Bao J (2014) An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries. J Phys Chem C 118:23527–23534

    Article  CAS  Google Scholar 

  23. Yang Y, Yang X, Zhang Y, Hou H, Jing M, Zhu Y, Fang L, Chen Q, Ji X (2015) Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: the influences of hexagonal and amorphous phase. J Power Sources 282:358–367

    Article  CAS  Google Scholar 

  24. Yi Y, Shim HW, Seo SD, Dar MA, Kim DW (2016) Enhanced Li- and Na-storage in Sb-graphene nanocomposite anodes. Mater Res Bull 76:338–343

    Article  CAS  Google Scholar 

  25. Liu Q, Yan Y, Chu X, Zhang Y, Xue L, Zhang W (2017) Graphene-induced growth of single crystalline Sb2MoO6 sheets and their sodium storage performance. J Mater Chem A 5:21328–21333

    Article  CAS  Google Scholar 

  26. Hameed AS, Reddy MV, Chen JLT, Chowdari BVR, Vittal JJ (2016) RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries. ACS Sustain Chem Eng 4:2479–2486

    Article  CAS  Google Scholar 

  27. Nithya C, Gopukumar S (2014) rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. J Mater Chem A 2:10516–10525

    Article  CAS  Google Scholar 

  28. Sun Q, Ren QQ, Li H, Fu ZW (2011) High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem Commun 13:1462–1464

    Article  CAS  Google Scholar 

  29. Xiong D, Li X, Shan H, Yan B, Li D, Langford C, Sun X (2016) Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices. Appl Energ 175:512–521

    Article  CAS  Google Scholar 

  30. Fan L, Li X, Cui Y, Xu H, Zhang X, Xiong D, Yan B, Wang Y, Li D (2015) Tin oxide/graphene aerogel nanocomposites building superior rate capability for lithium ion batteries. Electrochim Acta 176:610–619

    Article  CAS  Google Scholar 

  31. Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X (2016) Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater 6:1502057

    Article  CAS  Google Scholar 

  32. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522

    Article  CAS  PubMed  Google Scholar 

  33. Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219

    Article  CAS  PubMed  Google Scholar 

  34. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by key project of science and technology research program of Chongqing Education Commission of China (No.KJZD-K201801103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebu Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, B., Peng, Q., Jiao, X. et al. Carbon nanotubes enhanced Sb6O13 as a new anode material for sodium-ion batteries. Ionics 25, 523–531 (2019). https://doi.org/10.1007/s11581-019-02849-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02849-1

Keywords

Navigation