Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag


The transport of inclusion particles through the liquid metal/molten slag interface and their dissolution in the slag are two key processes of inclusion removal. Based on the latest version of inclusion transport model that takes into account full Reynolds number range and a dissolution kinetics model, a coupled model was developed to simulate the whole process of inclusion removal, from floating in the liquid steel to crossing the interface and further to entering and dissolving in the molten slag. The interaction between the inclusion motion and dissolution was discussed. Even though the inclusion velocity is a key parameter for dissolution, the simulation results show no obvious dissolution during moving state because the process is too short and most of the inclusions dissolve during its static stay in the slag side above the interface. The rate-controlling step of inclusion removal is the transport through the steel–slag interface for the small-size inclusion and static dissolution above the interface for the large-size inclusion, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. [1]

    H.V. Atkinson, G. Shi, Prog. Mater. Sci. 48 (2003) 457–520.

    Article  Google Scholar 

  2. [2]

    Y. He, Q. Li, W. Liu, Metall. Mater. Trans. B 43 (2012) 1149–1155.

    Article  Google Scholar 

  3. [3]

    Z.C. Zhao, R.S. Qin, Metal. Mater. Trans. B 48 (2017) 2781–2787.

    Article  Google Scholar 

  4. [4]

    K. Takahashi, S. Taniguchi, ISIJ Int. 43 (2003) 820–827.

    Article  Google Scholar 

  5. [5]

    C. Li, J. Gao, Z. Wang, Z. Guo, Metall. Mater. Trans. B 48 (2017) 900–907.

    Article  Google Scholar 

  6. [6]

    W. Lou, M. Zhu, Metall. Mater. Trans. B 44 (2013) 762–782.

    Article  Google Scholar 

  7. [7]

    D.Y. Sheng, M. Söder, P. Jönsson, L. Jonsson, Scand. J. Metall. 31 (2002) 134–147.

    Article  Google Scholar 

  8. [8]

    L.F. Guo, Y. Wang, H. Li, H.T. Ling, J. Iron Steel Res. Int. 20 (2013) No. 7, 35–39.

    Article  Google Scholar 

  9. [9]

    Y. Miki, B.G. Thomas, Metall. Mater. Trans. B 30 (1999) 639–654.

    Article  Google Scholar 

  10. [10]

    L. Zhang, S. Taniguchi, K. Cai, Metall. Mater. Trans. B 31 (2000) 253–266.

    Article  Google Scholar 

  11. [11]

    S. Yang, W. Liu, J. Li, JOM 67 (2015) 2993–3001.

    Article  Google Scholar 

  12. [12]

    S. Kimura, Y. Nabeshima, K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 31 (2000) 1013–1021.

    Article  Google Scholar 

  13. [13]

    J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, P. Wollants, J. Eur. Ceram. Soc. 27 (2007) 1961–1972.

    Article  Google Scholar 

  14. [14]

    J.P. Bellot, V. Descotes, A. Jardy, JOM 65 (2013) 1164–1172.

    Article  Google Scholar 

  15. [15]

    L. Zhang, JOM 65 (2013) 1138–1144.

    Article  Google Scholar 

  16. [16]

    P. Yan, B.A. Webler, P.C. Pistorius, R.J. Fruehan, Metall. Mater. Trans. B 46 (2015) 2414–2418.

    Article  Google Scholar 

  17. [17]

    J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, Y.B. Kang, J. Eur. Ceram. Soc. 30 (2010) 3181–3186.

    Article  Google Scholar 

  18. [18]

    J.H. Park, I.H. Jung, H.G. Lee, ISIJ Int. 46 (2006) 1626–1634.

    Article  Google Scholar 

  19. [19]

    B.J. Monaghan, L. Chen, J. Non-Cryst. Solids 347 (2004) 254–261.

    Google Scholar 

  20. [20]

    S.H. Lee, C. Tse, K.W. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar, A.W. Cramb, J. Non-Cryst. Solids 282 (2001) 41–48.

    Google Scholar 

  21. [21]

    K. Nakajima, K. Okamura, in: Proc. 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, 1992, pp. 505–510.

    Google Scholar 

  22. [22]

    J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.

    Article  Google Scholar 

  23. [23]

    J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1838–1847.

    Article  Google Scholar 

  24. [24]

    C. Liu, S. Yang, J. Li, L. Zhu, X. Li, Metall. Mater. Trans. B 47 (2016) 1882–1892.

    Article  Google Scholar 

  25. [25]

    S. Yang, J. Li, C. Liu, L. Sun, H. Yang, Metall. Mater. Trans. B 45 (2014) 2453–2463.

    Article  Google Scholar 

  26. [26]

    G.N. Shannon, S. Sridhar, High Temp. Mat. Pr.-Isr. 24 (2005) 111–124.

    Google Scholar 

  27. [27]

    L.A. Girifalco, R.J. Good, J. Phys. Chem. 61 (1957) 904–909.

    Article  Google Scholar 

  28. [28]

    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, Calphad 26 (2002) 189–228.

    Article  Google Scholar 

  29. [29]

    S. Vantilt, B. Coletti, B. Blanpain, J. Fransaer, P. Wollants, S. Sridhar, ISIJ Int. 44 (2004) 1–10.

    Article  Google Scholar 

  30. [30]

    B. Coletti, B. Blanpain, S. Vantilt, S. Sridhar, Metall. Mater. Trans. B 34 (2003) 533–538.

    Article  Google Scholar 

  31. [31]

    P. Misra, S. Sridhar, A.W. Cramb, Metall. Mater. Trans. B 32 (2001) 963–967.

    Article  Google Scholar 

  32. [32]

    P. Misra, V. Chevrier, S. Sridhar, A.W. Cramb, Metall. Mater. Trans. B 31 (2000) 1135–1139.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 51574020 and 51674023).

Author information




Wei Liu and Shu-feng Yang wrote the main manuscript text, and Hong-bo Yang built part of the model.

Corresponding author

Correspondence to Shu-feng Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yang, S., Li, J. et al. Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag. J. Iron Steel Res. Int. 26, 1147–1153 (2019).

Download citation


  • Inclusion removal
  • Slag dissolution
  • Inclusion separation
  • Clean steel
  • Secondary refining