Skip to main content
Log in

Separating Effect of a Novel Combined Magnetic Field on Inclusions in Molten Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The feasibility and effectiveness of a novel combined magnetic field (CMF) on the removal of inclusions with a density smaller than the surrounding melt were investigated. The experiment of the separating effect of CMF was conducted on a laboratory-scale apparatus by the simultaneous application of a rotating magnetic field (RMF) and a downward traveling magnetic field (TMF). Primary silicon particles precipitating from the solidification process of Al-Si-Cu alloy were regarded as the inclusions in a molten aluminum alloy. It was found that a CMF consisting of both a RMF and a downward TMF was able to separate silicon particles from the molten Al-Si-Cu alloy by making these particles migrate vertically toward the upper part of the samples. Compared with downward TMF or RMF, CMF improved the separating effectiveness substantially. It was proposed that this type of CMF was approved to be highly effective at eliminating the inclusions with a density smaller than the surrounding molten alloy. A tentative mechanism for the high separating effect of CMF was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Shu, B.D. Sun, J. Wang, T.X. Li, Z.M. Xu, and Y.H. Zhou: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1527–33.

    Article  CAS  Google Scholar 

  2. M.R. Afshar, M.R. Aboutalebi, M. Isac, and R.I.L. Guthrie: Mater. Lett., 2007, vol. 61, pp. 2045–49.

    Article  CAS  Google Scholar 

  3. K. Li, J. Wang, D. Shu, T.X. Li, B.D. Sun, and Y.H. Zhou: Mater. Lett., 2002, vol. 56, pp. 215–20.

    Article  CAS  Google Scholar 

  4. M.J. Li, T. Tamura, N. Omura, and K. Miwa: J. Alloys Compd., 2009, vol. 487, pp. 187–93.

    Article  CAS  Google Scholar 

  5. C. Vives: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 445–55.

    Article  CAS  Google Scholar 

  6. A. Radjai and K. Miwa: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3025–30.

    Article  CAS  Google Scholar 

  7. S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel, and G. Zouhar: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 211–16.

    Google Scholar 

  8. B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 402, pp. 55–65.

    Article  Google Scholar 

  9. J.P. Park, A. Morihira, K. Sassa, and S. Asai: Tetsu-to-Hagané, 1994, vol. 80, pp. 389–94.

    CAS  Google Scholar 

  10. Y. Tanaka, K. Sassa, K. Iwai, and S. Asai: Tetsu-to-Hagané, 1995, vol. 81, pp. 1120–25.

    CAS  Google Scholar 

  11. Y. Miki, H. Kitadka, T. Skuraya, and T. Fuji: ISIJ Int., 1992, vol. 32, pp. 142–49.

    Article  CAS  Google Scholar 

  12. D. Shu, B.D. Sun, K. Li, T.X. Li, Z.M. Xu, and Y.H. Zhou: Mater. Lett., 2002, vol. 55, pp. 322–26.

    Article  CAS  Google Scholar 

  13. K. Takahashi and T. Shoji: ISIJ Int., 2003, vol. 43, pp. 820–27.

    Article  CAS  Google Scholar 

  14. Y.J. He, Q.L. Li and W. Liu: Mater. Lett., 2011, vol. 65, pp. 1226–28.

    Article  CAS  Google Scholar 

  15. D. Shu, B.D. Sun, J. Wang, T.X. Li, Z.M. Xu, and Y.H. Zhou: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1535–40.

    Article  CAS  Google Scholar 

  16. D. Shu, B.D. Sun, J. Wang, T.X. Li, and Y.H. Zhou: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2979–88.

    Article  CAS  Google Scholar 

  17. B.W. Zhang, B.W. Li, and Y.D. He: J. Iron. Steel. Res., 2005, vol. 17, pp. 19–25.

    Google Scholar 

  18. H.K. Moffatt: J. Fluid Mech., 1965, vol. 22, pp. 521–28.

    Article  Google Scholar 

  19. A.D. Sneyd: J. Fluid Mech., 1979, vol. 92, pp. 35–51.

    Article  Google Scholar 

  20. I. Grants, A. Klyukin, and G. Gerbeth: J. Cryst. Growth, 2009, vol. 311, pp. 4255–64.

    Article  CAS  Google Scholar 

  21. I. Grants and G. Gerbeth: J. Cryst. Growth, 2004, vol. 269, pp. 630–38.

    Article  CAS  Google Scholar 

  22. R. Lantzsch, V. Galindo, I. Grants, C. Zhang, O. Patzold, G. Gerbeth, and M. Stelter: J. Cryst. Growth, 2007, vol. 305, pp. 249–56.

    Article  CAS  Google Scholar 

  23. K. Zaidat, T.O. Khachroum, G. Vian, C. Garnier, N.M. Noel, M.D. Dupouy, and R. Moreau: J. Cryst. Growth, 2005, vol. 275, pp. e1501–05.

    Article  Google Scholar 

  24. V. Metan, K. Eigenfeld, D. Rabiger, M. Leonhardt, and S. Eckert: J. Alloys Compd., 2009, vol. 487, pp. 163–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Nature Science Foundation of China (No. 50904042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Manuscript submitted December 2, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Li, Q. & Liu, W. Separating Effect of a Novel Combined Magnetic Field on Inclusions in Molten Aluminum Alloy. Metall Mater Trans B 43, 1149–1155 (2012). https://doi.org/10.1007/s11663-012-9676-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9676-9

Keywords

Navigation