Skip to main content
Log in

Separation of Fine Al2O3 Inclusion from Liquid Steel with Super Gravity

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An innovative approach of super gravity was proposed to separate fine Al2O3 inclusions from liquid steel in this study. To investigate the removal behaviors of inclusions, the effects of different gravity coefficients and time on separating the inclusions were studied. The results show that a large amount of Al2O3 inclusions gathered at the top of the sample obtained by super gravity, whereas there were almost no inclusions appearing at the bottom. The volume fraction and number density of inclusions presented a gradient distribution along the direction of the super gravity, which became steeper with increasing gravity coefficient and separating time. As a result of the collision between inclusions, a large amount of inclusions aggregated and grew during the moving process, which further decreased the removal time. The experimental required removal time of inclusions is close to the theoretical values calculated by Stokes law under gravity coefficient G ≤ 80, t ≤ 15 minutes, and the small deviation may be because the inclusion particles are not truly spherical. Under the condition of gravity coefficient G = 80, t = 15 minutes, the total oxygen content at the bottom of the sample (position of 5 cm) is only 8.4 ppm, and the removal rate is up to 95.6 pct compared with that under normal gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Liu, Q. Huang, C. Li, and B. Huang: Fusion Eng. Des., 2009, vol. 84, pp. 1214-8.

    Article  Google Scholar 

  2. K. Shiozawa, Y. Morii, S. Nishino, and L. Lu: J. Soc. Mater. Sci. Jpn., 2003, vol. 52, pp. 1311-7.

    Article  Google Scholar 

  3. Z.G. Yang, J.M. Zhang, S.X. Li, G.Y. Li, Q.Y. Wang, W.J. Hui, and Y.Q. Weng: Mater. Sci. Eng.: A, 2006, vol. 427, pp. 167-74.

    Article  Google Scholar 

  4. G. Qian, Y. Hong, and C. Zhou: Eng. Fail. Anal., 2010, vol. 17, pp. 1517-25.

    Article  Google Scholar 

  5. L.T. Wang, Q.Y. Zhang, S.H. Peng, and Z.B. Li: ISIJ Int., 2005, vol. 45, pp. 331-7.

    Article  Google Scholar 

  6. Z. Taslicukur, C. Balaban, and N. Kuskonmaz: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 637-40.

    Article  Google Scholar 

  7. L. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59-82.

    Article  Google Scholar 

  8. Y. Miki, H. Kitaoka, T. Sakuraya, and T. Fujii: ISIJ Int., 1992, vol. 32, pp. 142-9.

    Article  Google Scholar 

  9. Y. Miki, S. Ogura, and T. Fujii: Kawasaki Steel Technical Report-English Edition, 1996, pp. 67–73.

  10. C. Ramshaw and R.H. Mallinson: Patent 0002568, 1979.

  11. A. Das, A. Bhowal, and S. Datta: Ind. Eng. Chem. Res., 2008, vol. 47, pp. 4230-5.

    Article  Google Scholar 

  12. C.C. Lin and K.S. Chien: Separ. Purif. Tech., 2008, vol. 63, pp. 138-44.

    Article  Google Scholar 

  13. Y.S. Chen, F.Y. Lin, C.C. Lin, C.Y.D. Tai, and H.S. Liu: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 6846-53.

    Article  Google Scholar 

  14. T. Liu, Z.C. Guo, Z. Wang, and M.Y. Wang: Appl. Surf. Sci., 2010, vol. 256, pp. 6634-40.

    Article  Google Scholar 

  15. M.Y. Wang, Z. Wang, Z.C. Guo, and Z.J. Li: Int. J. Hydro. Energ., 2011, vol. 36, pp. 3305-12.

    Article  Google Scholar 

  16. C. Li, J.T. Gao, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1516-9.

    Article  Google Scholar 

  17. J.T. Gao, Y.W. Zhong, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2459-67.

    Article  Google Scholar 

  18. J.T. Gao, Y.W. Zhong, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1080-92.

    Article  Google Scholar 

  19. J.T. Gao, Y.W. Zhong, and Z.C. Guo: ISIJ Int., 2016, vol. 56, pp. 1352-7.

    Article  Google Scholar 

  20. J.T. Gao, L. Guo, and Z.C. Guo: ISIJ Int., 2015, vol. 55, pp. 2535-42.

    Article  Google Scholar 

  21. L.X. Zhao, Z.C. Guo, Z. Wang, and M.Y. Wang: Metall. Mater. Trans. B, 2010, vol. 41, pp. 505-8.

    Article  Google Scholar 

  22. G.Y. Song, B. Song, Y.H. Yang, Z.B. Yang, and W.B. Xin: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2190-7.

    Article  Google Scholar 

  23. Y. Watanabe, A. Kawamoto, and K. Matsuda: Compos. Sci. Tech., 2002, vol. 62, pp. 881-8.

    Article  Google Scholar 

  24. Y. Watanabe, Y. Inaguma, H. Sato, and E. Miura-Fujiwara: Materials, 2009, vol. 2, pp. 2510-25.

    Article  Google Scholar 

  25. J.C. Li, Z.C. Guo, and J.T. Gao: ISIJ Int., 2014, vol. 54, pp. 743-9.

    Article  Google Scholar 

  26. S.G. Shabestari and J.E. Gruzleski: Metall. Mater. Trans. A, 1995, vol. 26, pp. 999-1006.

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundations of China (Nos. 51234001 and 51404025) and the Fundamental Research Funds for the Central Universities (FRF-TP-15-009A2), which is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Gao.

Additional information

Manuscript submitted August 19, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Gao, J., Wang, Z. et al. Separation of Fine Al2O3 Inclusion from Liquid Steel with Super Gravity. Metall Mater Trans B 48, 900–907 (2017). https://doi.org/10.1007/s11663-016-0905-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0905-5

Keywords

Navigation