Skip to main content

Advertisement

Log in

Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity (\( f_{c} \)) and alignment ratio (\( f_{e} \)) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.F. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-291.

    Article  Google Scholar 

  2. H.V. Atkinson and G. Shi: Prog. Mater. Sci. 2003, vol. 48, pp. 457-520.

    Article  Google Scholar 

  3. L.F. Zhang, J. Aoki and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361-379.

    Article  Google Scholar 

  4. G. Shi, H.V. Atkinson, C.M. Sellars, C.W. Anderson and J.R. Yates: Acta Mater. 2001, vol. 49, pp. 1813-1820.

    Article  Google Scholar 

  5. L. Liu and F.H. Samuel: J Mater. Sci., 1998, vol. 33, pp. 2269-2281.

    Article  Google Scholar 

  6. J. M. Gregg and H. K. D. H. Bhadeshia: Acta Mater., 1997, vol. 45, 739–748.

    Article  Google Scholar 

  7. K.M. Wu, Y. Inagawa and M. Enomoto: Mater. Charact. 2004, vol.52, pp. 121-127.

    Article  Google Scholar 

  8. J. Eshelby: Proc. R. Soc. London Sect. A 1957, vol. 241A, pp. 376-396.

    Article  Google Scholar 

  9. Z.Y. Deng, M.Y. Zhu and S.C. Du: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3158-3167.

    Article  Google Scholar 

  10. C. Gatellier, H. Gaye, J. Lehmann, J.N. Pontoire and P. V. Riboud: Steel Res. 1993, vol. 64, pp. 87-92.

    Article  Google Scholar 

  11. S.A. Decterov, Y.B. Kang and I.H. Jung: J Phase Equilib Diff. 2009, vol.30, pp. 443-461.

    Article  Google Scholar 

  12. M. Suzuki, R. Yamaguchi, K. Murakami and M. Nakada: ISIJ Inter. 2001, vol. 41, pp. 247-256.

    Article  Google Scholar 

  13. R. S. Qin: Mater. Sci. Technol. 2015, vol. 31, pp. 203-206.

    Article  Google Scholar 

  14. R. S. Qin, A. Rahnama, W. J. Lu, X. F. Zhang and B. Elliott-Bowman: Mater. Sci. Technol., 2014, vol. 30, pp. 1040–1044.

    Article  Google Scholar 

  15. X.F. Zhang, W.J. Lu and R.S. Qin: Scr. Mater., 2013, vol. 69, pp.453-456.

    Article  Google Scholar 

  16. S. Taniguchi and J.K. Brimacombe: ISIJ Inter., 1994, vol. 34, pp. 722-731.

    Article  Google Scholar 

  17. X. F. Zhang and R. S. Qin: Sci Rep., 2015, vol.5, pp.10162.

    Article  Google Scholar 

  18. X. F. Zhang and R. S. Qin: Appl. Phys. Lett., 2014, vol. 104, pp. 114106.

    Article  Google Scholar 

  19. Z.C. Zhao and R.S. Qin: Mater. Sci. Technol., 2017, doi 10.1080/02670836.2016.1270729.

    Google Scholar 

  20. M. Li and R. I. L. Guthrie: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 855-866.

    Article  Google Scholar 

  21. W. B. Dai, J. K. Yu, C. M. Du, L. Zhang and X. L. Wang: Mater. Sci. Technol., 2015, vol. 31, pp. 1555–1559.

    Article  Google Scholar 

  22. R. I. L. Guthrie: Mater. Trans. B. 2001, vol. 32B, pp. 1067-1079.

    Article  Google Scholar 

  23. W. B. Dai, X. L. Zhou, X. Yang, G. P. Tang, D. B. Jia, N. L. Cheng and J. K. Yu: Acta Metall. Sinica-English Lett., 2016, vol. 29, pp. 500–504.

    Article  Google Scholar 

  24. L. Klinger and L. Levin: J. App. Phys., 1995, vol. 78, pp. 1669–1672.

    Article  Google Scholar 

  25. R.S. Qin and Z. Fan: Mater. Sci. Technol., 2001, vol. 17, pp. 1149-1152.

    Article  Google Scholar 

  26. R.S. Qin, A. Bhowmik: Mater. Sci. Technol., 2015, vol.31, pp.1560-1563.

    Article  Google Scholar 

  27. Y. Dolinsky, T. Elperin: Phys. Rev. B, 1994, vol. 50, pp.52–58.

    Article  Google Scholar 

  28. R.S. Qin, B.L. Zhou: Int. J. Non-Equilib. Proc., 1998, vol.11, pp.77-86.

    Google Scholar 

  29. R.S. Qin: Sci. Rep., 2017, vol. 7, pp. 41451.

    Article  Google Scholar 

  30. X.F. Zhang, W.J. Lu and R.S. Qin: Phil. Mag. Lett., 2015, vol. 95, pp. 101-109.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by EPSRC (EP/L00030X/1) and the Royal Society Newton Advanced Fellowship (NA150320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Qin.

Additional information

Manuscript submitted February 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z.C., Qin, R.S. Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal. Metall Mater Trans B 48, 2781–2787 (2017). https://doi.org/10.1007/s11663-017-1028-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1028-3

Keywords

Navigation