The cross-fertilization of biology with design and engineering offers new sustainable solutions and diverse forms of expressions for product design and fabrication [1,2,3,4]. This emerging practice suggests that the product is a co-creation of humans and living organisms, such as algae, fungi, bacteria and plants, in which the organisms might contribute as building blocks, material sources, energy generators and more [1]. Technological and economic opportunities, alongside its ecological benefits, point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century [5,6,7,8].
Biodesign, within the context of product design, builds upon the relatively established field of biofabrication, which has a long history in biomedical science and engineering [5, 9,10,11,12].
Researchers have achieved to embed cells of microorganism, animal and plant origins into a variety of scaffold using digital fabrication technologies (e.g. [4, 13,14,15,16,17,18]). Today, potential applications of biodesign vary from biological energy sources (e.g. microbial fuel cells) to bio (-degradable) materials, such as fungi-based leather (e.g. https://www.mycoworks.com) and oil-free plastic and foam alternatives (e.g. https://www.bloomtreadwell.com).
While the majority of the biodesign projects are still at an experimental scale, recent initiatives of biodesign companies such as Ecovative, MycoWorks, MOGU and Modern Meadow for scaling-up are promising. In the fabrication of sustainable material alternatives for product design, many of the current initiatives focus on bacteria and fungi. An exception to this is a UK-based company, Fullgrown, which cultivates trees into wooden furniture by a self-developed process relying on traditional horticultural techniques such as grafting, pruning and espaliering. Fullgrown’s commission-based business model allows them to deliver the grown products by trees in 6–10 years.
For thousands of years, plants have been (cultivated and) used as material sources by humans, resulting in a well-established repertoire of techniques and tools. Nevertheless, when it comes to biodesign—as also evident from the Fullgrown example—the transformation of plant or plant parts into products can be very lengthy. Therefore, despite the familiarity of the organism for humans, plants and plant parts have been less explored in biodesign, compared to other organisms. Addressing this gap, in this paper, we explore the potentials of plant roots for product design. In particular, we demonstrate the possibility of creating self-standing 3D structures by integrating computational design tools in designing with plant roots.
The potentials of living plants as (inter)active beings in the design of interactive products have long been explored by human–computer interaction (HCI) communities as [19,20,21,22,23,24,25,26,27]. In particular, the ability of plants to respond to the changes in the environment has inspired scholars to incorporate them in sensing devices [28,29,30], information outputs [31,32,33,34,35] and self-nurturing systems [36,37,38,39].
Embarking on a more artistic endeavour and fascinated by the intelligence and behaviour of plant roots, Diana Scherer has explored the material ability of plant roots at the seedling stage to create an unprecedented textile-like material, Interwoven. Through a self-developed technique, aided by digital fabricated templates which guides the growth of plant roots (patent pending), the artist directs plant roots into geometric patterns found in nature, like honeycomb structures, or foliate designs reminiscent of Middle Eastern arabesques, shown in Fig. 1. The process takes 1–2 weeks to complete.
Scherer’s work illustrates that roots are not only productive means but also intelligent agents that respond to and adapt actively and dynamically to their environment. Yet, in order to further advance their applications in product design, there is a need to systematically understand plant root behaviour and explore new fabrication parameters. For instance, the digitally fabricated piece, which is used primarily to create templates for controlling the organism’s growth, can be a part of the final artefact, a direction that has not yet been explored.
In collaboration with Diana Scherer, our work contributes to the understanding of plant root in designing and fabricating 3D objects with the aid of computational tools. The potential lies in the following aspects: (1) speed: In 1 or 2 weeks, oat roots are able to grow to around 120 mm according to our experiment. Therefore, we argue that plant roots have the potential to fabricate a number of low-height products at a high efficiency (compared to a tree stem). (2) 3D-form ability: we show the potential of plant roots for fabricating 3D forms. (3) glue-ability: Our work demonstrates the potential of roots to connect discrete computationally designed, optimized and fabricated beads into a 600 mm by 600 mm 3D mass. In this project, rather than creating boundaries between the living organisms and manmade materials, we progressively explored a symbiotic approach where the biologically and digitally designed materials provide each other with structural stability.