Skip to main content
Log in

Recent biomedical applications of bio-sourced materials

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Natural anisotropic nanostructures occurring in several organisms have gained more and more attention because of their obvious advantages in sensitivity, stability, security, miniaturization, portability, online use, and remote monitoring. Due to the development of research on nature-inspired bionic structures and the demand for highly efficient, low-cost microfabrication techniques, an understanding of and the ability to replicate the mechanism of structural coloration have become increasingly significant. These sophisticated structures have many unique functions and are used in many applications. Many sensors have been proposed based on their novel structures and unique optical properties. Several of these bio-inspired sensors have been used for infrared radiation/thermal, pH, and vapor techniques, among others, and have been discussed in detail, with an intense focus on several biomedical applications. However, many applications have yet to be discovered. In this review, we will describe these nanostructured materials based on their sources in nature and various structures, such as layered, hierarchical, and helical structures. In addition, we discuss the functions endowed by these structures, such as superhydrophobicity, adhesion, and high strength, enabling them to be employed in a number of applications in biomedical fields, including cell cultivation, biosensors, and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Roth RR (1983) The foundation of bionics. Perspect Biol Med 26(2):229–242

    Article  Google Scholar 

  2. Wahl D (2006) Bionics vs. biomimicry: from control of nature to sustainable participation in nature. In: Design and nature III: comparing design in nature with science and engineering, vol 87, pp 289–298

  3. Bar-Cohen Y (2012) Nature as a model for mimicking and inspiration of new technologies. Int J Aeronaut Space Sci 13(1):1–13

    Google Scholar 

  4. Wang Z, Hang G, Li J, Wang Y, Xiao K (2008) A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sens Actuators A 144(2):354–360

    Article  Google Scholar 

  5. Rumelhart DE (1989) Toward a microstructural account of human reasoning. In: Vosniadou S, Ortony A (eds) Similarity and analogical reasoning. Cambridge University Press, New York, p 298

    Chapter  Google Scholar 

  6. Liu K, Jiang L (2011) Multifunctional integration: from biological to bio-inspired materials. ACS Nano 5(9):6786–6790

    Article  Google Scholar 

  7. Cheung T (2006) From the organism of a body to the body of an organism: occurrence and meaning of the word ‘organism’ from the seventeenth to the nineteenth centuries. Br J Hist Sci 39(3):319–339

    Article  Google Scholar 

  8. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):e1001127

    Article  Google Scholar 

  9. Ramos M, Lobo J, Esteban M (2001) Ten years inventorying the Iberian fauna: results and perspectives. Biodivers Conserv 10(1):19–28

    Article  Google Scholar 

  10. Liu K, Yao X, Jiang L (2010) Recent developments in bio-inspired special wettability. Chem Soc Rev 39(8):3240–3255

    Article  Google Scholar 

  11. Liu K, Jiang L (2011) Bio-inspired design of multiscale structures for function integration. Nano Today 6(2):155–175

    Article  Google Scholar 

  12. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19(17):2213–2217

    Article  Google Scholar 

  13. Ko D, Tumbleston JR, Henderson KJ, Euliss LE, DeSimone JM, Lopez R, Samulski ET (2011) Biomimetic microlens array with antireflective "moth-eye" surface. Soft Matter 7:6404–6407

    Article  Google Scholar 

  14. Boden SA, Bagnall DM (2010) Optimization of moth-eye antireflection schemes for silicon solar cells. Prog Photovolt Res Appl 18(3):195–203

    Article  Google Scholar 

  15. Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2(12):1440–1443

    Article  Google Scholar 

  16. Huang Y-F, Jen Y-J, Chen L-C, Chen K-H, Chattopadhyay S (2015) Design for approaching cicada-wing reflectance in low-and high-index biomimetic nanostructures. ACS Nano 9(1):301–311

    Article  Google Scholar 

  17. Jiwei Q, Yudong L, Ming Y, Qiang W, Zongqiang C, Wudeng W, Wenqiang L, Xuanyi Y, Jingjun X, Qian S (2013) Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res Lett 8(1):437

    Article  Google Scholar 

  18. Yao X, Chen Q, Xu L, Li Q, Song Y, Gao X, Quéré D, Jiang L (2010) Bioinspired ribbed nanoneedles with robust superhydrophobicity. Adv Funct Mater 20(4):656–662

    Article  Google Scholar 

  19. Hu DL, Chan B, Bush JW (2003) The hydrodynamics of water strider locomotion. Nature 424(6949):663–666

    Article  Google Scholar 

  20. Gao X, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432(7013):36–36

    Article  Google Scholar 

  21. Shi F, Niu J, Liu J, Liu F, Wang Z, Feng XQ, Zhang X (2007) Towards understanding why a superhydrophobic coating is needed by water striders. Adv Mater 19(17):2257–2261

    Article  Google Scholar 

  22. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34

    Article  Google Scholar 

  23. Zeng X, Qian L, Yuan X, Zhou C, Li Z, Cheng J, Xu S, Wang S, Pi P, Wen X (2016) Inspired by stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation. ACS Nano 11(1):760–769

    Article  Google Scholar 

  24. Usherwood JR, Lehmann F-O (2008) Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J R Soc Interface 5(28):1303–1307

    Article  Google Scholar 

  25. Somps C, Luttges M (1985) Dragonfly flight: novel uses of unsteady separated flows. Science 228:1326–1330

    Article  Google Scholar 

  26. Dudley R (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton, p 476

    Google Scholar 

  27. Okamoto M, Yasuda K, Azuma A (1996) Aerodynamic characteristics of the wings and body of a dragonfly. J Exp Biol 199(2):281–294

    Google Scholar 

  28. Nguyen SHT, Webb HK, Hasan J, Tobin MJ, Crawford RJ, Lvanova EP (2013) Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings. Colloids Surf B 106:126–134

    Article  Google Scholar 

  29. Nakata T, Liu H, Tanaka Y, Nishihashi N, Wang X, Sato A (2011) Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir Biomim 6(4):045002

    Article  Google Scholar 

  30. Chung K, Yu S, Heo CJ, Shim JW, Yang SM, Han MG, Lee HS, Jin Y, Lee SY, Park N (2012) Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv Mater 24(18):2375–2379

    Article  Google Scholar 

  31. Kinoshita S, Yoshioka S (2005) Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem 6(8):1442–1459

    Article  Google Scholar 

  32. Peng W, Zhu S, Zhang W, Yang Q, Zhang D, Chen Z (2014) Spectral selectivity of 3D magnetophotonic crystal film fabricated from single butterfly wing scales. Nanoscale 6(11):6133–6140

    Article  Google Scholar 

  33. Li Q, Zeng Q, Shi L, Zhang X, Zhang KQ (2016) Bio-inspired sensors based on photonic structures of Morpho butterfly wings: a review. J Mater Chem C 4(9):1752–1763

    Article  Google Scholar 

  34. Bixler GD, Bhushan B (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8(44):11271–11284

    Article  Google Scholar 

  35. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3(2):178–182

    Article  Google Scholar 

  36. Potyrailo RA, Bonam RK, Hartley JG, Starkey TA, Vukusic P, Vasudev M, Bunning T, Naik RR, Tang Z, Palacios MA (2015) Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat Commun 6:7959

    Article  Google Scholar 

  37. Zhu X, Zhang H, Wu J (2014) Chemiresistive ionogel sensor array for the detection and discrimination of volatile organic vapor. Sens Actuators B Chem 202:105–113

    Article  Google Scholar 

  38. Potyrailo RA, Starkey TA, Vukusic P, Ghiradella H, Vasudev M, Bunning T, Naik RR, Tang Z, Larsen M, Deng T (2013) Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response. Proc Nat Acad Sci USA 110(39):15567–15572

    Article  Google Scholar 

  39. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  Google Scholar 

  40. Lu T, Zhu S, Ma J, Lin J, Wang W, Pan H, Tian F, Zhang W, Zhang D (2015) Bioinspired thermoresponsive photonic polymers with hierarchical structures and their unique properties. Macromol Rapid Commun 36(19):1722–1728

    Article  Google Scholar 

  41. Xu D, Yu H, Xu Q, Xu G, Wang K (2015) Thermoresponsive photonic crystal: synergistic effect of poly(\(N\)-isopropylacrylamide)-co-acrylic acid and morpho butterfly wing. ACS Appl Mater Interfaces 7(16):8750–8756

    Article  Google Scholar 

  42. Pris AD, Utturkar Y, Surman C, Morris WG, Vert A, Zalyubovskiy S, Deng T, Ghiradella HT, Potyrailo RA (2012) Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat Photonics 6(3):195–200

    Article  Google Scholar 

  43. Zhang F, Shen Q, Shi X, Li S, Wang W, Luo Z, He G, Zhang P, Tao P, Song C (2015) Infrared detection based on localized modification of Morpho butterfly wings. Adv Mater 27(6):1077–1082

    Article  Google Scholar 

  44. Mu Z, Zhao X, Xie Z, Zhao Y, Zhong Q, Bo L, Gu Z (2013) In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). J Mater Chem B 1(11):1607–1613

    Article  Google Scholar 

  45. Garrett NL, Sekine R, Dixon MW, Tilley L, Bambery KR, Wood BR (2015) Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Phys Chem Chem Phys 17(33):21164–21168

    Article  Google Scholar 

  46. Song G, Zhou H, Gu J, Liu Q, Zhang W, Su H, Su Y, Yao Q, Zhang D (2017) Tumor marker detection using surface enhanced Raman spectroscopy on 3D Au butterfly wings. J Mater Chem B 5(8):1594–1600

    Article  Google Scholar 

  47. Badge I, Stark AY, Paoloni EL, Niewiarowski PH, Dhinojwala A (2014) The role of surface chemistry in adhesion and wetting of gecko toe pads. Sci Rep 4(6643):6643–6643

    Google Scholar 

  48. Peng J, Yu P, Zeng S, Liu X, Chen J, Xu W (2010) Application of click chemistry in the fabrication of cactus-like hierarchical particulates for sticky superhydrophobic surfaces. J Phys Chem C 114(13):5926–5931

    Article  Google Scholar 

  49. Liu K, Du J, Wu J, Jiang L (2012) Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale 4(3):768–772

    Article  Google Scholar 

  50. Li Z, Du R (2013) Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int J Adv Rob Syst 10(4):209–220

    Article  Google Scholar 

  51. Hirose S, Mori M (2004) Biologically inspired snake-like robots. In: IEEE international conference on robotics and biomimetics, 2004, ROBIO 2004. IEEE, pp 1–7

  52. Crespi A, Ijspeert AJ (2008) Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans Rob 24(1):75–87

    Article  Google Scholar 

  53. Meyers MA, Lin AYM, Seki Y, Chen PY, Kad BK, Bodde S (2006) Structural biological composites: an overview. JOM 58(7):35–41

    Article  Google Scholar 

  54. Sachs C, Fabritius H, Raabe D (2006) Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. J Struct Biol 155(3):409–425

    Article  Google Scholar 

  55. Rhee H, Horstemeyer MF, Hwang Y, Lim H, Kadiri HE, Trim W (2009) A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater Sci Eng C 29(8):2333–2339

    Article  Google Scholar 

  56. Thorbjarnarson J (1999) Crocodile tears and skins: international trade, economic constraints, and limits to the sustainable use of crocodilians. Conserv Biol 13(3):465–470

    Article  Google Scholar 

  57. Buthelezi S, Southway C, Govinden U, Bodenstein J, Du TK (2012) An investigation of the antimicrobial and anti-inflammatory activities of crocodile oil. J Ethnopharmacol 143(1):325–330

    Article  Google Scholar 

  58. Qin Z, Pugno NM, Buehler MJ (2014) Mechanics of fragmentation of crocodile skin and other thin films. Sci Rep 4(21):4966

    Google Scholar 

  59. Milinkovitch MC, Zwicker M (2013) Crocodile head scales are not developmental units but emerge from physical cracking. Science 339(6115):78–81

    Article  Google Scholar 

  60. Yao HB, Fang HY, Wang XH, Yu SH (2011) Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem Soc Rev 40(7):3764–3785

    Article  Google Scholar 

  61. Meyers MA, Lin AYM, Chen PY, Muyco J (2008) Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behav Biomed Mater 1(1):76–85

    Article  Google Scholar 

  62. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55(2):306–337

    Article  Google Scholar 

  63. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426

    Article  Google Scholar 

  64. Kang SM, You I, Cho WK, Shon HK, Lee TG, Choi IS, Karp JM, Lee H (2010) One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew Chem Int Ed 49(49):9401–9404

    Article  Google Scholar 

  65. Ryu J, Ku SH, Lee H, Park CB (2010) Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv Funct Mater 20(13):2132–2139

    Article  Google Scholar 

  66. Rui D, Zhang J, Du X, Yao X, Kunihiko K (2009) Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem 112(3):702–706

    Article  Google Scholar 

  67. Zylberberg L, Bonaventure J, Cohen-Solal L, Hartmann DJ, Bereiterhahn J (1992) Organization and characterization of fibrillar collagen in fish scales in situ and in vitro. China J Chin Mater Med 103(15):273–285

    Google Scholar 

  68. Papastamatiou YP, Cartamil DP, Lowe CG, Meyer CG, Wetherbee BM, Holland KN (2011) Scales of orientation, directed walks and movement path structure in sharks. J Anim Ecol 80(4):864–874

    Article  Google Scholar 

  69. Zhu D, Ortega CF, Motamedi R, Szewciw L, Vernerey F, Barthelat F (2012) Structure and mechanical performance of a “modern” fish scale. Adv Eng Mater 14(4):185–194

    Article  Google Scholar 

  70. Knackstedt MA, Arns CH, Senden TJ, Gross K (2006) Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials 27(13):2776–2786

    Article  Google Scholar 

  71. Wang Y, Tao S, An Y, Wu S, Meng C (2013) Bio-inspired high performance electrochemical supercapacitors based on conducting polymer modified coral-like monolithic carbon. J Mater Chem A 1(31):8876–8887

    Article  Google Scholar 

  72. Yeom SW, Oh IK (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater Struct 18(8):085002

    Article  Google Scholar 

  73. Najem J, Sarles SA, Akle B, Leo DJ (2012) Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater Struct 21(9):299–312

    Article  Google Scholar 

  74. Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R (2003) Coloration strategies in peacock feathers. Proc Natl Acad Sci USA 100(22):12576–12578

    Article  Google Scholar 

  75. Han J, Su H, Zhang C, Dong Q, Zhang W, Zhang D (2008) Embedment of ZnO nanoparticles in the natural photonic crystals within peacock feathers. Nanotechnology 19(36):365602

    Article  Google Scholar 

  76. Jin Y, Yuan H, Lan J-L, Yu Y, Lin Y-H, Yang X (2017) Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes. Nanoscale 9(35):13298–13304

    Article  Google Scholar 

  77. Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19

    Article  Google Scholar 

  78. Ko FK, Jovicic J (2004) Modeling of mechanical properties and structural design of spider web. Biomacromolecules 5(3):780–785

    Article  Google Scholar 

  79. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  Google Scholar 

  80. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24(8):4114–4119

    Article  Google Scholar 

  81. Darmanin T, Bombera R, Colpo P, Valsesia A, Laugier JP, Rossi F, Guittard F (2017) Bioinspired rose-petal-like substrates generated by electropolymerization on micropatterned gold substrates. Chempluschem 82(3):352–357

    Article  Google Scholar 

  82. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir ACS J Surf Colloids 24(8):4114–4119

    Article  Google Scholar 

  83. Lai Y, Gao X, Zhuang H, Huang J, Lin C, Jiang L (2009) Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv Mater 21(37):3799–3803

    Article  Google Scholar 

  84. Bixler GD, Bhushan B (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8(44):11271–11284

    Article  Google Scholar 

  85. Wu H, Zhang R, Sun Y, Lin D, Sun Z, Pan W, Downs P (2008) Biomimetic nanofiber patterns with controlled wettability. Soft Matter 4(12):2429–2433

    Article  Google Scholar 

  86. Kang SM, Lee C, Kim HN, Lee BJ, Lee JE, Kwak MK, Suh KY (2013) Directional oil sliding surfaces with hierarchical anisotropic groove microstructures. Adv Mater 25(40):5756–5761

    Article  Google Scholar 

  87. Bohn HF, Federle W (2004) From the cover: insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Nat Acad Sci USA 101(39):14138–14143

    Article  Google Scholar 

  88. Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L (2016) Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532(7597):85–89

  89. Chen H, Zhang L, Zhang P, Zhang D, Han Z, Jiang L (2017) A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata. Small 13(4):1601676

    Article  Google Scholar 

  90. Tan T, Rahbar N, Allameh SM, Kwofie S, Dissmore D, Ghavami K, Soboyejo WO (2011) Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomater 7(10):3796–3803

    Article  Google Scholar 

  91. Tanaka A, Zhu Q, Tan H, Horiba H, Ohnuki K, Mori Y, Yamauchi R, Ishikawa H, Iwamoto A, Kawahara H (2014) Biological activities and phytochemical profiles of extracts from different parts of bamboo (Phyllostachys pubescens). Molecules 19(6):8238–8260

  92. Tian WQ, Gao QM, Tan Y, Yang K, Zhu LH, Yang CX, Zhang H (2015) Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J Mater Chem A 3(10):5656–5664

    Article  Google Scholar 

  93. Tian WQ, Gao QM, Tan Y, Yang K, Zhu LH, Yang CX, Zhang H (2015) Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J Mater Chem A 3(10):5656–5664

    Article  Google Scholar 

  94. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11(3):286–289

    Article  Google Scholar 

  95. Idil N, Mattiasson B (2017) Imprinting of microorganisms for biosensor applications. Sensors 17(4):708

    Article  Google Scholar 

  96. Yousuf A, Sannino F, Addorisio V, Pirozzi D (2010) Microbial conversion of olive oil mill wastewaters into lipids suitable for biodiesel production. J Agric Food Chem 58(15):8630–8635

    Article  Google Scholar 

  97. Fan L, Song Y (2016) Overview on electricigens for microbial fuel cell. Open Biotechnol J 10(1):398–406

    Article  Google Scholar 

  98. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7(4):204–211

    Article  Google Scholar 

  99. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78

    Article  Google Scholar 

  100. Dai X, Tian Y, Li J, Su X, Wang X, Zhao S, Liu L, Luo Y, Liu D, Zheng H (2015) Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol 81(4):1375–1386

    Article  Google Scholar 

  101. Stoll ZA, Forrestal C, Ren ZJ, Xu P (2015) Shale gas produced water treatment using innovative microbial capacitive desalination cell. J Hazard Mater 283:847–855

    Article  Google Scholar 

  102. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  Google Scholar 

  103. Ehrlich H, Motylenko M, Sundareshwar PV, Ereskovsky A, Zgłobicka I, Noga T, Płociński T, Tsurkan MV, Wyroba E, Suski S (2016) Multiphase biomineralization: enigmatic invasive siliceous diatoms produce crystalline calcite. Adv Funct Mater 26(15):2503–2510

    Article  Google Scholar 

  104. Li Q, Gadd GM (2017) Biosynthesis of copper carbonate nanoparticles by ureolytic fungi. Appl Microbiol Biotechnol 101(19):7397–7407

    Article  Google Scholar 

  105. Xia A, Jacob A, Tabassum MR, Herrmann C, Murphy JD (2016) Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro-and micro-algae. Bioresour Technol 205:118–125

    Article  Google Scholar 

  106. Xia A, Cheng J, Song W, Su H, Ding L, Lin R, Lu H, Liu J, Zhou J, Cen K (2015) Fermentative hydrogen production using algal biomass as feedstock. Renew Sustain Energy Rev 51:209–230

    Article  Google Scholar 

  107. Ike A, Toda N, Tsuji N, Hirata K, Miyamoto K (1997) Hydrogen photoproduction from CO\(_2\)-fixing microalgal biomass: application of halotolerant photosynthetic bacteria. J Ferment Bioeng 84(6):606–609

    Article  Google Scholar 

  108. Ren L, Ahn Y, Logan BE (2014) A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environ Sci Technol 48(7):4199–4206

    Article  Google Scholar 

  109. Feng Y, He W, Liu J, Wang X, Qu Y, Ren N (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 156:132–138

    Article  Google Scholar 

  110. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny J (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95(11):2126–2146

    Article  Google Scholar 

  111. Jayakumar R, Prabaharan M, Nair S, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150

    Article  Google Scholar 

  112. O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  Google Scholar 

  113. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  Google Scholar 

  114. Lee MK, Rich MH, Lee J, Kong H (2015) A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue. Biomaterials 58:26–34

    Article  Google Scholar 

  115. Lee MK, Rich MH, Baek K, Lee J, Kong H (2015) Bioinspired tuning of hydrogel permeability-rigidity dependency for 3D cell culture. Sci Rep 5:8948

    Article  Google Scholar 

  116. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  Google Scholar 

  117. Roy KJ, Smith S (1971) Sedimentation and coral reef development in turbid water: Fanning Lagoon. Pac Sci 25(2):234–248

    Google Scholar 

  118. Corson F (2010) Fluctuations and redundancy in optimal transport networks. Phys Rev Lett 104(4):048703

    Article  Google Scholar 

  119. Li J, Wei J, Liu Y, Liu B, Liu T, Jiang Y, Ding L, Liu C (2017) A microfluidic design to provide a stable and uniform in vitro microenvironment for cell culture inspired by the redundancy characteristic of leaf areoles. Lab Chip 17(22):3921–3933

    Article  Google Scholar 

  120. Lu J, Zheng F, Cheng Y, Ding H, Zhao Y, Gu Z (2014) Hybrid inverse opals for regulating cell adhesion and orientation. Nanoscale 6(18):10650–10656

    Article  Google Scholar 

  121. Lu J, Zou X, Zhao Z, Mu Z, Zhao Y, Gu Z (2015) Cell orientation gradients on an inverse opal substrate. ACS Appl Mater Interfaces 7(19):10091

    Article  Google Scholar 

  122. Ma H, Luo J, Sun Z, Xia L, Shi M, Liu M, Chang J, Wu C (2016) 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials 111:138–148

    Article  Google Scholar 

  123. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169

    Article  Google Scholar 

  124. Wang X, Kim HJ, Wong C, Vepari C, Matsumoto A, Kaplan DL (2006) Fibrous proteins and tissue engineering. Mater Today 9(12):44–53

    Article  Google Scholar 

  125. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4

    Article  Google Scholar 

  126. Amadori S, Torricelli P, Panzavolta S, Parrilli A, Fini M, Bigi A (2015) Multi-layered scaffolds for osteochondral tissue engineering: in vitro response of co-cultured human mesenchymal stem cells. Macromol Biosci 15(11):1535–1545

    Article  Google Scholar 

  127. Zhao Z, Wang J, Lu J, Yu Y, Fu F, Wang H, Liu Y, Zhao Y, Gu Z (2016) Tubular inverse opal scaffolds for biomimetic vessels. Nanoscale 8(28):13574–13580

    Article  Google Scholar 

  128. Heyligers JMM, Arts CHP, Verhagen HJM, Groot PGD, Moll FL (2005) Improving small-diameter vascular grafts: from the application of an endothelial cell lining to the construction of a tissue-engineered blood vessel. Ann Vasc Surg 19(3):448–456

    Article  Google Scholar 

  129. Turner AP (2000) Biosensors-sense and sensitivity. Science 290(5495):1315–1317

    Article  Google Scholar 

  130. Garrett NL, Vukusic P, Ogrin F, Sirotkin E, Winlove CP, Moger J (2009) Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis. J Biophotonics 2(3):157–166

    Article  Google Scholar 

  131. Mu Z, Zhao X, Huang Y, Lu M, Gu Z (2015) Plasmonic staining: photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis. Small 11(45):6036–6043

    Article  Google Scholar 

  132. Liu B, Zhao X, Jiang W, Fu D, Gu Z (2016) Multiplex bioassays encoded by photonic crystal beads and SERS nanotags. Nanoscale 8(40):17465–17471

    Article  Google Scholar 

  133. Liu B, Ni H, Zhang D, Wang D, Fu D, Chen H, Gu Z, Zhao X (2017) Ultrasensitive detection of protein with wide linear dynamic range based on core–shell SERS nanotags and photonic crystal beads. ACS Sens 2(7):1035–1043

  134. Ishida H, Suetsugu KI, Nakamoto T, Moriizumi T (1994) Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors. Sens Actuators A 45(2):153–157

    Article  Google Scholar 

  135. Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, Liu Q (2015) Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron 67:662–669

  136. Sankaran S, Khot LR, Panigrahi S (2012) Biology and applications of olfactory sensing system: a review. Sens Actuators B Chem 171:1–17

    Article  Google Scholar 

  137. Wang C, Li X, Gao E, Jian M, Xia K, Wang Q, Xu Z, Ren T, Zhang Y (2016) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28(31):6640–6648

  138. Zhang M, Wang C, Wang H, Jian M, Hao X, Zhang Y (2017) Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater 27(2):1604795

    Article  Google Scholar 

  139. Liu H, Zhang Y, Li R, Sun X, Désilets S, Abou-Rachid H, Jaidann M, Lussier L-S (2010) Structural and morphological control of aligned nitrogen-doped carbon nanotubes. Carbon 48(5):1498–1507

    Article  Google Scholar 

  140. Maiti S, Karan SK, Lee J, Mishra AK, Khatua BB, Kim JK (2017) Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42:282–293

    Article  Google Scholar 

  141. Gao B, Hong L, Gu Z (2016) Patterned photonic nitrocellulose for pseudo-paper microfluidics. Anal Chem 88(10):5424–5429

    Article  Google Scholar 

  142. Chi J, Gao B, Sun M, Zhang F, Su E, Liu H, Gu Z (2017) Patterned photonic nitrocellulose for pseudopaper ELISA. Anal Chem 89(14):7727–7733

    Article  Google Scholar 

  143. Gao B, Tang L, Zhang D, Xie Z, Su E, Liu H, Gu Z (2017) Transpiration-inspired fabrication of opal capillary with multiple heterostructures for multiplex aptamer-based fluorescent assays. ACS Appl Mater Interfaces 9(38):32577–32582

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Innovative and Entrepreneurial Talent Recruitment Program of Jiangsu Province, the National Natural Science Foundation of China (21405014, 21635001, 21627806 and 21501026), Key Research and Development Plan of Jiangsu Province BE2016002, the Project of Special Funds of Jiangsu Province for the Transformation of Scientific and Technological Achievements (BA2015067), the 111 Project (B17011, Ministry of Education of China), and the Natural Science Foundation of Jiangsu Province (BK20140626 and BK20140619). China Postdoctoral Science Foundation funded Project (2017M621597). The Fundamental Research Funds for the Central Universities (2242018R20011).

Author information

Authors and Affiliations

Authors

Contributions

ZG developed the idea; AE, ZH and BG drafted the manuscript; JC, ES, DZ, SL, HX, and HL revised the manuscript. All authors reviewed the content and have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Zhongze Gu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbaz, A., He, Z., Gao, B. et al. Recent biomedical applications of bio-sourced materials. Bio-des. Manuf. 1, 26–44 (2018). https://doi.org/10.1007/s42242-018-0002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-018-0002-5

Keywords

Navigation