Skip to main content

Advertisement

Log in

High-performance low-smoke halogen-free flame-retardant composites for Fuxing electric multiple units via synergistic effects of char formation and anti-dripping of clay-based organic sheet silicates

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The polyethylene (PE)-based low-smoke halogen-free flame-retardant composites by introducing clay-based organic sheet silicates (COSS) into PE and ethylene–vinyl acetate copolymer (EVA) blends were prepared by melt blending method. COSS with hydroxyl and organic functional groups on the surface had a good compatibility with the polymer matrix, which favored their uniform dispersion in the polymer matrix. The introduction of COSS restricted the movement of molecular chains and raised the thermal decomposition temperature of the polymer. Meanwhile, the storage modulus and complex viscosity of the materials were raised, and the internal plastic deformation of the materials was enhanced. When the COSS content was 1 wt %, the tensile strength reached 14.7 MPa, and the elongation at break was 596%. The introduced COSS could weaken the regularity of the molecular chain, generate many holes and carriers, and reduce the crystallization ability and volume resistivity of the material. Significantly, a low addition of 3 wt % COSS could improve the density and uniformity of the carbon layer and greatly alleviate the dripping phenomenon during the burning process of the material. With the addition of 7 wt % COSS, the limiting oxygen index (LOI) of the material could reach 28.8%, and the material had a good stiffness balance and significant anti-drip effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

COSS:

Clay-based organic sheet silicates

PE:

Polyethylene

EVA:

Ethylene–vinyl acetate copolymer

EMU:

Electric multiple units

LOI:

Limiting oxygen index

POE-g-GMA:

Glycidyl methacrylate grafted poly(ethyleneoctene)

References

  1. Qiu W, Hao Q, Annamareddy SHK, Xu B, Guo Z, & Jiang Q (2022) Electric vehicle revolution and implications: ion battery and energy. Eng Sci 20:100–109. https://doi.org/10.30919/es8d772

  2. Tran TQ, Lee JKY, Chinnappan A, Loc NH, Tran LT, Ji D, Ramakrishna S et al (2020) High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables. J Mater Sci Technol 42:46–53. https://doi.org/10.1016/j.jmst.2019.08.057

    Article  CAS  Google Scholar 

  3. Van Der Laan DC, McRae DM, Weiss JD (2018) Effect of transverse compressive monotonic and cyclic loading on the performance of superconducting CORC® cables and wires. Supercond Sci Tech 32:015002. https://doi.org/10.1088/1361-6668/aae8bf

  4. Jaidev K, Suresh SS, Gohatre OK, Biswal M, S. Mohanty S, Nayak K, (2020) Development of recycled blends based on cables and wires with plastic cabinets: an effective solution for value addition of hazardous waste plastics. Waste Manage Res 38:312–321. https://doi.org/10.1177/0734242X19890918

    Article  CAS  Google Scholar 

  5. Li X, Zhao S, Hu W, Zhang X, Pei L, Wang Z (2019) Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2. Appl Surf Sci 481:374–378. https://doi.org/10.1016/j.apsusc.2019.03.114

    Article  CAS  Google Scholar 

  6. Hu W, Huang J, Zhang X, Zhao S, Pei L, Zhang C, Liu Y, Wang Z (2020) A mechanically robust and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation. Appl Surf Sci 507:145168. https://doi.org/10.1016/j.apsusc.2019.145168

  7. Shokri E, Yegani R, Heidari S, Shoeyb Z (2015) Effect of PE-g-MA compatibilizer on the structure and performance of HDPE/EVA blend membranes fabricated via TIPS method. Chem Eng Res Des 100:237–247. https://doi.org/10.1016/j.cherd.2015.05.025

    Article  CAS  Google Scholar 

  8. Ping W, Yi F, Zhang G, Wu S, Feng S, Hu K, Xu B, Ren J, Guo Z (2023) NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/j.jmst.2022.10.006

    Article  Google Scholar 

  9. Wang Z, Zhu H, Cao N, Du R, Liu Y, Zhao G (2017) Superhydrophobic surfaces with excellent abrasion resistance based on benzoxazine/mesoporous SiO2. Mater Lett 186:274–278. https://doi.org/10.1016/j.matlet.2016.10.010

    Article  CAS  Google Scholar 

  10. Zhang W, Feng Y, Althakafy JT, Liu Y, Abo-Dief HM, Huang M, Zhou L, Su F, Liu C, Shen C (2022) Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv Compos Hybrid Mater 5(3):2012–2020. https://doi.org/10.1007/s42114-022-00539-7

    Article  CAS  Google Scholar 

  11. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu BB, Murugadoss V, Huang M, Guo Z (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater 5(2):1090–1099. https://doi.org/10.1007/s42114-022-00438-x

    Article  CAS  Google Scholar 

  12. Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2022) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Hybrid Mater 5:113–129. https://doi.org/10.1007/s42114-021-00317-x

    Article  CAS  Google Scholar 

  13. Xie Y, Yang Y, Liu Y, Wang S, Guo X, Wang H, Cao D (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4:543–551. https://doi.org/10.1007/s42114-021-00249-6

    Article  CAS  Google Scholar 

  14. Ahmad M, Al-Dala RNS, Beddu S, Itam ZB (2021) Thermo-physical properties of graphite powder and polyethylene modified asphalt concrete. Eng Sci 17:121–132. https://doi.org/10.30919/es8d569

  15. Wang W, Yi L, Zheng Y, Lu J, Jiang A, Wang D (2023) Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Compos Commun 37:101455. https://doi.org/10.1016/j.coco.2022.101455

  16. Zhu H, Hu W, Zhao S, Zhang X, Pei L, Zhao G, Wang Z (2020) Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. J Mater Sci 55:2215–2225. https://doi.org/10.1007/s10853-019-04050-1

    Article  CAS  Google Scholar 

  17. Lv Y, Dai J, Xia L, Luo L, Xu Y, Dai L (2022) Smoke suppression and phosphorus-free condensed phase flame retardant epoxy resin composites based on Salen-Ni. Polym Degrad Stabil 201:109980. https://doi.org/10.1016/j.polymdegradstab.2022.109980

  18. Cárdenas MA, García-López D, Gobernado-Mitre I, Merino JC, Pastor JM, Martínez JDD, Calveras D (2008) Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites–effect of particle size and surface treatment of ATH filler. Polym Degrad Stabil 93:2032–2037. https://doi.org/10.1016/j.polymdegradstab.2008.02.015

    Article  CAS  Google Scholar 

  19. Chen Y, Lin J, Mersal GA, Zuo J, Li J, Wang Q, Feng Y, Liu J, Liu Z, Wang B, Xu BB, Guo Z (2022) “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil. J Mater Sci Technol 128:82–97. https://doi.org/10.1016/j.jmst.2022.05.002

    Article  Google Scholar 

  20. Zhu Q, Zhao Y, Miao B, Abo-Dief HM, Qu M, Pashameah RA, Xu BB, Huang M, Algadi H, Liu X, Guo, Z (2022) Hydrothermally synthesized ZnO-RGO-PPy for water-borne epoxy nanocomposite coating with anticorrosive reinforcement. Prog Org Coat 172:107153. https://doi.org/10.1016/j.porgcoat.2022.107153

  21. Yao F, Xie W, Ma C, Wang D, El-Bahy ZM, Helal MH, Liu H, Du A, GUO Z, Gu H (2022) Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@ copper foam hybrid nanofillers. Compos Part B-Eng 245:110236. https://doi.org/10.1016/j.compositesb.2022.110236

  22. Cai J, Murugadoss V, Jiang J, Gao X, Lin Z, Huang M, Guo J, Alsareii SA, Algadi H, Kathiresan M (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater 5(2):641–650. https://doi.org/10.1007/s42114-022-00473-8

    Article  CAS  Google Scholar 

  23. Duan H, Zhuang C, Mei F, Zeng C, Pashameah RA, Huang M, Alzahrani E, Gao J, Han Y, Yu Q, Wang Z (2022) Benzyl (4-fluorophenyl) phenylphosphine oxide-modified epoxy resin with improved flame retardancy and dielectric properties. Adv Compos Hybrid Mater 5(2):776–787. https://doi.org/10.1007/s42114-022-00491-6

    Article  CAS  Google Scholar 

  24. Cao Y, Weng M, Mahmoud MHH, Elnaggar AY, Zhang L, El Azab IH, Chen Y, Huang M, Huang J, Sheng X (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5(2):1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  25. Chu T, Gao Y, Yi L, Fan C, Yan L, Ding C, Liu C, Huang Q, Wang Z (2022) Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv Compos Hybrid Mater 5(3):1821–1829. https://doi.org/10.1007/s42114-022-00440-3

    Article  CAS  Google Scholar 

  26. Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4:979–988. https://doi.org/10.1007/s42114-021-00274-5

    Article  CAS  Google Scholar 

  27. Lian M, Sun J, Jiang D, Sun Q, El-Bahy ZM, Abo-Dief HM, Salem MA, Ali HM, Xu Q, Guo Z (2022) Triboelectric nanogenerator self-heating floor–possibility to achieve intelligence in the architecture. J Mater Chem A 10(45):24353–24361. https://doi.org/10.1039/D2TA06942C

  28. Zhao Y, Liu K, Hou H, Chen LQ (2022) Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study. Mater Des 216:110555. https://doi.org/10.1016/j.matdes.2022.110555

  29. Du J, Jin L, Zeng H, Feng B, Xu S, Zhou E, Shi X, Liu L, Hu X (2019) Facile preparation of an efficient flame retardant and its application in ethylene vinyl acetate. Appl Clay Sci 168:96–105. https://doi.org/10.1016/j.clay.2018.11.004

    Article  CAS  Google Scholar 

  30. Han S, Zhu X, Chen F, Chen S, Liu H (2020) Flame retardant system for rigid polyurethane foams based on diethyl bis(2-hydroxyethyl)aminomethylphosphonate and in-situ exfoliated clay. Polym Degrad Stabil 177:109178. https://doi.org/10.1016/j.polymdegradstab.2020.109178

  31. Lu C, Gao X, Yao D, Cao C, Luo Y (2018) Improving flame retardancy of linear low-density polyethylene/nylon6 blends via controlling localization of clay and intumescent flame retardant. Polym Degrad Stabil 153:75–87. https://doi.org/10.1016/j.polymdegradstab.2018.04.022

    Article  CAS  Google Scholar 

  32. Tamura K, Ohyama S, Umeyama K, Kitazawa T, Yamagishi A (2016) Preparation and properties of halogen-free flame-retardant layered silicate-polyamide 66 nanocomposites. Appl Clay Sci 126:107–112. https://doi.org/10.1016/j.clay.2016.02.027

    Article  CAS  Google Scholar 

  33. Modesti M, Lorenzetti A, Besco S, Hrelja D, Semenzato S, Bertani R, Michelin RA (2008) Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams. Polym Degrad Stabil 93(12):2166–2171. https://doi.org/10.1016/j.polymdegradstab.2008.08.005

    Article  CAS  Google Scholar 

  34. Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY (2009) Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer 50(15):3478–3487. https://doi.org/10.1016/j.polymer.2009.06.013

    Article  CAS  Google Scholar 

  35. Tang W, Qin Z, Liu F, Gong S, Peng C, Gu X, Zhang S, Wang X, Jin X, Bourbigot S (2020) Influence of two kinds of low dimensional nano-sized silicate clay on the flame retardancy of polypropylene. Mater Chem Phys 256:123743 https://doi.org/10.1016/j.matchemphys.2020.123743

  36. Hajibeygi M, Mousavi M, Shabanian M, Habibnejad N, Vahabi H (2021) Design and preparation of new polypropylene/magnesium oxide micro particles composites reinforced with hydroxyapatite nanoparticles: a study of thermal stability, flame retardancy and mechanical properties. Mater Chem Phys 258:123917. https://doi.org/10.1016/j.matchemphys.2020.123917

  37. Wu Y, Tang M, Wang N, Qin J, Chen X, Zhang K (2018) Preparation and investigation on morphology, thermal stability and crystallization behavior of HDPE/EVA/organo-modified layered double hydroxide nanocomposites. Polym Composite 39:E1849–E1857. https://doi.org/10.1002/pc.24834

    Article  CAS  Google Scholar 

  38. Arslan F, Dilsiz N (2020) Flame resistant properties of LDPE/PLA blends containing halogen-free flame retardant. J Appl Polym Sci 137:48960. https://doi.org/10.1002/app.48960

    Article  CAS  Google Scholar 

  39. Nakatani H, Hayashi H, Motokucho S (2021) Preparation of a novel oligomer type compatibilizer for polypropylene/polystyrene blend. React Funct Polym 169:105090. https://doi.org/10.1016/j.reactfunctpolym.2021.105090

  40. Yao M, Wu HJ, Liu H, Zhou ZX, Wang T, Jiao YH (2021) In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA. Polym Degrad Stabil 183:109417. https://doi.org/10.1016/j.polymdegradstab.2020.109417

  41. Insulated cables (wires) for railway vehicles of rated voltages up to and including 3 kV. Amendment 1: Cross-linked polyolefin insulated cables (wires) for railway vehicles. GB 12528.11–2003.

  42. Lujan-Acosta R, Sánchez-Valdes S, Ramírez-Vargas E, Ramos-DeValle LF, Espinoza-Martinez AB, Rodriguez-Fernandez OS, Lozano-Ramirez T, Lafleur PG (2014) Effect of amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame retardant nanocomposites. Mater Chem Phys 146:437–445. https://doi.org/10.1016/j.matchemphys.2014.03.050

    Article  CAS  Google Scholar 

  43. Das P, Manna S, Behera AK, Shee M, Basak P, Sharma AK (2022) Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: a review. Environ Res 212:113534. https://doi.org/10.1016/j.envres.2022.113534

  44. Wang C, Liu J, Wang Y, Han Z (2020) Enhanced flame retardance in polyethylene/magnesium hydroxide/polycarbosilane blends. Mater Chem Phys 253:123373. https://doi.org/10.1016/j.matchemphys.2020.123373

  45. Khanal S, Zhang W, Ahmed S, Ali M, Xu S (2018) Effects of intumescent flame retardant system consisting of tris (2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites. Compos Part A-Appl S 112:444–451. https://doi.org/10.1016/j.compositesa.2018.06.030

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 51903002), Natural Science Foundation of Anhui Education Department (2022AH020024, 2022AH040047, gxyq2022028, 2022AH030039), Major science and technology projects of Anhui Province (202103a05020031), Anhui Jianzhu University PhD Startup Fund (2019QDZ22, 2018QD59) and University Collaborative Innovation Project of Anhui province (GXXT-2019–017), Hefei Key Technology Major R&D Projects (No. J2019G19), Research Fund for Postdoctoral Researchers in Anhui Province (2020B413), Anhui Provincial Natural Science Research Project of Colleges and Universities (YJS20210509), and Wuhu Key Technology Major R&D Projects (No. 2022yf27).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ping Wang. Methodology: Hongyu Tian, Haibing Lu, Mengting Shi, Xinyun Hu. Formal analysis and investigation: Jinping Hu, Jie Song, Li Yang. Writing—original draft preparation: Shang Gao, Xinliang Chen. Funding acquisition: Ping Wang. Supervision: Ping Wang, Long Chen, Yunsheng Ding, Min Shi.

Corresponding author

Correspondence to Ping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 523 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Chen, X., Gao, S. et al. High-performance low-smoke halogen-free flame-retardant composites for Fuxing electric multiple units via synergistic effects of char formation and anti-dripping of clay-based organic sheet silicates. Adv Compos Hybrid Mater 6, 88 (2023). https://doi.org/10.1007/s42114-023-00670-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00670-z

Keywords

Navigation