Skip to main content

Advertisement

Log in

Highly fire-retardant optical wood enabled by transparent fireproof coatings

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Transparent wood (TW) is a bio-sourced material with superior optical functions. However, the fire safety problem greatly restricts its development and applications. In this paper, a new fire-retardant TW (FRTW) with excellent optical properties and flame retardancy was prepared by impregnating a refractive index matching transparent fireproof coating (phosphate ester-polyethylene glycol (PEAG)) into delignified wood (DLW). TW/PEAG presented record-high transparency with the transmittance of 93% and the haze of 98%. Besides, the TW/PEAG had a 60% drop in peak mass loss rate and a 2.5-fold increment in char residual to those of the natural wood (NW) in thermogravimetric analysis indicating enhanced thermal stability. Its peak heat release rate, total heat release, and heat of combustion were decreased by 82.4%, 84.3%, and 80.8% to those of epoxy resin-based TW. Limiting oxygen index and flammability experimental results also indicated the enhanced flame-retardant performance of TW/PEAG. The enhanced flame retardancy of TW/PEAG was due to the PEAG that promoted the thermally insulating char layer formation and reduced the heat release. In addition, the TW/PEAG exhibited excellent mechanical performance as it obtained 153.6 MPa tensile strength and 2.2 GPa elastic modulus. The FRTW presented good optical and flame retardant properties, promising to become a desirable optical material in engineering fields.

Graphical abstract

The flame-retardant transparent wood was fabricated, which obtained both high flame retardancy and high optical transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DI:

Deionized

DGEBA:

Diglycidyl ether of bisphenol A

FRTW:

Fire-retardant transparent wood

FTIR:

Fourier transform infrared

HRR:

Heat release rate

LOI:

Limiting oxygen index

MF:

Melamine formaldehyde

MLR:

Mass loss rate

NIR:

Near infrared ray

NW:

Natural wood

n-BA:

N-butyl alcohol

PA:

Phosphoric acid

PEA:

Phosphate ester

PEAG:

Phosphate ester-polyethylene glycol

PEG:

Polyethylene glycol

PER:

Pentaerythritol

PG:

Propylene glycol

pHRR:

Peak heat release rate

PI:

Polyimide

pMLR:

Peak mass loss rate

PMMA:

Polymethyl methacrylate

PVA:

Polyvinyl alcohol

SEM:

Scanning electron microscope

TGA:

Thermogravimetric analysis

THR:

Total heat release

TMW:

Transparent magnetic wood

TW:

Transparent wood

UV:

Ultraviolet

VIS:

Visible

References

  1. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L, National Renewable Energy Lab (NREL), Golden CO (United States) (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

  2. Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L (2019) A radiative cooling structural material. Science 364:760–763. https://doi.org/10.1126/science.aau9101

    Article  CAS  Google Scholar 

  3. Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4:979–988. https://doi.org/10.1007/s42114-021-00274-5

    Article  CAS  Google Scholar 

  4. Ling S, Kaplan DL, Buehler MJ (2018) Nanofibrils in nature and materials engineering. Nat Rev Mater 3:18016. https://doi.org/10.1038/natrevmats.2018.16

    Article  CAS  Google Scholar 

  5. Li Y, Chen C, Song J, Yang C, Kuang Y, Vellore A, Hitz E, Zhu M, Jiang F, Yao Y, Gong A, Martini A, Hu L (2020) Strong and superhydrophobic wood with aligned cellulose nanofibers as a waterproof structural material. Chin J Chem 38:823–829. https://doi.org/10.1002/cjoc.202000032

    Article  CAS  Google Scholar 

  6. Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste UH, Bruck HA, Zhu JY, Vellore A, Li H, Minus ML, Jia Z, Martini A, Li T, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 54:224–228. https://doi.org/10.1038/nature25476

    Article  CAS  Google Scholar 

  7. Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, Luo W, Pastel G, Yang B, Hu L (2016) Wood Composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Adv Energy Mater 6. https://doi.org/10.1002/aenm.201601122

  8. Xia Q, Chen C, Li T, He S, Gao J, Wang X, Hu L (2021) Solar-assisted fabrication of large-scale, patternable transparent wood. Sci Adv 7:8. https://doi.org/10.1126/sciadv.abd7342

    Article  CAS  Google Scholar 

  9. Xia Q, Chen C, Yao Y, He S, Wang X, Li J, Gao J, Gan W, Jiang B, Cui M, Hu L (2021) In situ lignin modification toward photonic wood. Adv Mater 33:2001588. https://doi.org/10.1002/adma.202001588

    Article  CAS  Google Scholar 

  10. Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L (2017) Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES), All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10:538–545. https://doi.org/10.1039/C6EE03716J

  11. Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz EM, Xu S, Yang C, Wang Y, Hu L, Energy Frontier Research Centers (EFRC), College Park MD (United States), Nanostructures for Electrical Energy Storage (NEES) (2017) High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci - PNAS 114:3584–3589. https://doi.org/10.1073/pnas.1618871114

  12. Fu Q, Medina L, Li Y, Carosio F, Hajian A, Berglund LA (2017) Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl Mater Interfaces 9:36154–36163. https://doi.org/10.1021/acsami.7b10008

    Article  CAS  Google Scholar 

  13. He S, Chen C, Li T, Song J, Zhao X, Kuang Y, Liu Y, Pei Y, Hitz E, Kong W, Gan W, Yang B, Yang R, Hu L (2019) An energy-efficient, wood-derived structural material enabled by pore structure engineering towards building efficiency. Small Methods 4:1900747. https://doi.org/10.1002/smtd.201900747

    Article  CAS  Google Scholar 

  14. Burgert I, Cabane E, Zollfrank C, Berglund L (2014) Bio-inspired functional wood-based materials - hybrids and replicates. Int Mater Rev 60:431–450. https://doi.org/10.1179/1743280415Y.0000000009

    Article  CAS  Google Scholar 

  15. Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn SJ, Hu L (2020) Structure–property–function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  16. Li Y, Fu Q, Yang X, Berglund L (2018) Transparent wood for functional and structural applications, Philosophical transactions of the Royal Society of London. Series A: Math Phys Engineering Sci 376:20170182–20170182. https://doi.org/10.1098/rsta.2017.0182

    Article  CAS  Google Scholar 

  17. Yu Z, Yao Y, Yao J, Zhang L, Chen Z, Gao Y, Luo H (2017) Transparent wood containing CsxWO3 nanoparticles for heat-shielding-window applications. J Mater Chem A 5:6019–6024. https://doi.org/10.1039/C7TA00261K

    Article  CAS  Google Scholar 

  18. Mi R, Chen C, Keplinger T, Pei Y, He S, Liu D, Li J, Dai J, Hitz E, Yang B, Burgert I, Hu L (2020) Scalable aesthetic transparent wood for energy efficient buildings. Nat Commun 11:3836–3836. https://doi.org/10.1038/s41467-020-17513-w

    Article  CAS  Google Scholar 

  19. Gan W, Gao L, Xiao S, Zhang W, Zhan X, Li J (2016) Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template. J Mater Sci 52:3321–3329. https://doi.org/10.1007/s10853-016-0619-8

    Article  CAS  Google Scholar 

  20. Gan W, Xiao S, Gao L, Gao R, Li J, Zhan X (2017) Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustain Chem Eng 5:3855–3862. https://doi.org/10.1021/acssuschemeng.6b02985

    Article  CAS  Google Scholar 

  21. Li Y, Cheng M, Jungstedt E, Xu B, Sun L, Berglund L (2019) Optically transparent wood substrate for perovskite solar cells. ACS Sustain Chem Eng 7:6061–6067. https://doi.org/10.1021/acssuschemeng.8b06248

    Article  CAS  Google Scholar 

  22. Zhu M, Li T, Davis CS, Yao Y, Dai J, Wang Y, AlQatari F, Gilman JW, Hu L (2016) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332–339. https://doi.org/10.1016/j.nanoen.2016.05.020

    Article  CAS  Google Scholar 

  23. Mi R, Li T, Dalgo D, Chen C, Kuang Y, He S, Zhao X, Xie W, Gan W, Zhu J, Srebric J, Yang R, Hu L (2020) A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv Func Mater 30:2001291. https://doi.org/10.1002/adfm.202001291

    Article  CAS  Google Scholar 

  24. Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, Yao Y, Luo W, Henderson D, Hu L (2016) Highly anisotropic, highly transparent wood composites. Adv Mater 28:7563–7563. https://doi.org/10.1002/adma.201604084

    Article  CAS  Google Scholar 

  25. Li Y, Fu Q, Yu S, Yan M, Berglund L (2016) Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biomacromol 17:1358–1364. https://doi.org/10.1021/acs.biomac.6b00145

    Article  CAS  Google Scholar 

  26. Montanari C, Ogawa Y, Olsén P, Berglund LA (2021) High performance, fully bio-based, and optically transparent wood biocomposites. Adv Sci 8:2100559. https://doi.org/10.1002/advs.202100559

    Article  CAS  Google Scholar 

  27. Chen L, Xu Z, Wang F, Duan G, Xu W, Zhang G, Yang H, Liu J, Jiang S (2020) A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength. Compos Commun 20:5. https://doi.org/10.1016/j.coco.2020.05.001

    Article  Google Scholar 

  28. Yan L, Xu Z, Deng N (2020) Synthesis of organophosphate-functionalized graphene oxide for enhancing the flame retardancy and smoke suppression properties of transparent fire-retardant coatings. Polym Degrad Stab 172:109064. https://doi.org/10.1016/j.polymdegradstab.2019.109064

    Article  CAS  Google Scholar 

  29. Liu X, Guo J, Sun J, Gu X, Feng W, Liu W, Li H, Zhang S (2019) The preparation of a bisphenol A epoxy resin based ammonium polyphosphate ester and its effect on the char formation of fire resistant transparent coating. Prog Org Coat 129:349–356. https://doi.org/10.1016/j.porgcoat.2019.01.003

  30. Xiao Z, Liu S, Zhang Z, Mai C, Xie Y, Wang Q (2018) Fire retardancy of an aqueous, intumescent, and translucent wood varnish based on guanylurea phosphate and melamine-urea-formaldehyde resin. Prog Org Coat 121:64–72. https://doi.org/10.1016/j.porgcoat.2018.04.015

    Article  CAS  Google Scholar 

  31. Xu Z, Xie X, Yan L, Feng Y (2021) Fabrication of organophosphate-grafted kaolinite and its effect on the fire-resistant and anti-ageing properties of amino transparent fire-retardant coatings. Polym Degrad Stab 188:109589. https://doi.org/10.1016/j.polymdegradstab.2021.109589

    Article  CAS  Google Scholar 

  32. Wang G, Huang Y, Hu X (2014) Synthesis of a novel phosphorus-containing polymer and its application in amino intumescent fire resistant coating. Prog Org Coat 76:188–193. https://doi.org/10.1016/j.porgcoat.2012.09.005

    Article  CAS  Google Scholar 

  33. Byrne CE, Nagle DC (1997) Carbonization of wood for advanced materials applications. Carbon 35:259–266. https://doi.org/10.1016/S0008-6223(96)00136-4

    Article  CAS  Google Scholar 

  34. Kong L, Guan H, Wang X (2018) In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustain Chem Eng 6:3349–3357. https://doi.org/10.1021/acssuschemeng.7b03518

    Article  CAS  Google Scholar 

  35. Poletto M, Zattera AJ, Santana RMC (2012) Thermal decomposition of wood: Kinetics and degradation mechanisms. Biores Technol 126:7–12. https://doi.org/10.1016/j.biortech.2012.08.133

    Article  CAS  Google Scholar 

  36. Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Biores Technol 109:148–153. https://doi.org/10.1016/j.biortech.2011.11.122

    Article  CAS  Google Scholar 

  37. Brebu M, Vasile C (2010) Thermal degradation of lignin a review. Cellul Chem Technol 44:353–363. https://doi.org/10.1007/s10086-010-1118-1

    Article  CAS  Google Scholar 

  38. Gao M, Sun CY, Wang CX (2006) Thermal degradation of wood treated with flame retardants. J Therm Anal Calorim 85:765–769. https://doi.org/10.1007/s10973-005-7225-3

    Article  CAS  Google Scholar 

  39. Zhang T, Wu M, Kuga S, Ewulonu CM, Huang Y (2020) Cellulose Nanofibril-based flame retardant and its application to paper. ACS Sustain Chem Eng 8:10222–10229. https://doi.org/10.1021/acssuschemeng.0c02892

    Article  CAS  Google Scholar 

  40. Yan L, Xu Z, Liu D (2019) Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates. Prog Org Coat 129:327–337. https://doi.org/10.1016/j.porgcoat.2019.01.013

    Article  CAS  Google Scholar 

  41. Yu B, Xing W, Guo W, Qiu S, Wang X, Lo S, Hu Y (2016) Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. J Mater Chem A Mater Energy Sustain 4:7330–7340. https://doi.org/10.1039/c6ta01565d

  42. Qiu S, Zou B, Zhang T, Ren X, Yu B, Zhou Y, Kan Y, Hu Y (2020) Integrated effect of NH2-functionalized/triazine based covalent organic framework black phosphorus on reducing fire hazards of epoxy nanocomposites. Chem Eng J 401:11. https://doi.org/10.1016/j.cej.2020.126058

    Article  CAS  Google Scholar 

  43. Yuan B, Guo M, Murugadoss V, Song G, Guo Z (2021) Immobilization of graphitic carbon nitride on wood surface via chemical crosslinking method for UV resistance and self-cleaning. Adv Compos Hybrid Mater 4:286–293. https://doi.org/10.1007/s42114-021-00235-y

    Article  CAS  Google Scholar 

  44. Rao S, Nagarajappa AN, Nair GB, Chathoth S, Pandey AM, Flexible KK (2019) transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos Sci Technol 182:107719. https://doi.org/10.1016/j.compscitech.2019.107719

    Article  CAS  Google Scholar 

  45. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14(9). https://doi.org/10.3390/en14092511

  46. Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2022) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00317-x

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the High-Tech Industry Science and Technology Innovation Leading Plan of Hunan Province (No. 2020GK2079), the Key Research and Development Program of Hunan Province (No. 2021SK2054), the Innovation training program for college students of Central South University (No. S2021105330654) and the High Performance Computing Center of Central South University. Besides, this study has been sponsored by the National Natural Science Foundation of China (No: 51906238) and the Open Project Program of the State Key Laboratory of Fire Science (No. HZ2020-KF01). Also, this work was supported by the Project of Anhui Jianzhu University 2019 Talent Research Program under No. 2019QDZ21, Natural Science Foundation of Shanxi Province (No. 20210302123017) and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20220012). The authors gratefully acknowledge these supports.

Author information

Authors and Affiliations

Authors

Contributions

Tianyang Chu: Data curation and writing—original draft. Yuxin Gao: Formal analysis. Liang Yi: Software. Chuangang Fan: Visualization. Long Yan: Investigation. Chao Ding: Conceptualization and resources. Changcheng Liu: Methodology and supervision. Que Huang: Validation and writing—review and editing. Zhengyang Wang: Funding acquisition and project administration.

Corresponding authors

Correspondence to Chao Ding, Changcheng Liu, Que Huang or Zhengyang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, T., Gao, Y., Yi, L. et al. Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv Compos Hybrid Mater 5, 1821–1829 (2022). https://doi.org/10.1007/s42114-022-00440-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00440-3

Keywords

Navigation