Skip to main content

Advertisement

Log in

Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Neutron shielding material with high shielding efficiency, small density, and flexibility is urgently needed in nuclear plants, aerospace, and healthcare field. In this study, neutron shielding composite of ultrahigh molecular weight polyethylene fiber (UPEF)/boron nitride (BN)/polyurethane (PU) is fabricated by spraying BN/PU dispersion on UPEF, where UPEF and BN are used to slow and absorb the neutrons, respectively, and PU was used as adhesive matrix, due to that polyethylene (PE) with high content of hydrogen can effectively slow the high-energy neutrons to thermal neutrons through multiple collisions with hydrogen atoms while boron has large capture cross-section for thermal neutrons. The result shows that the neutron transmission factor (I/I0) of the 3.2-mm-thick UPEF/BN/PU composite decreases to 0.28% at a BN content of 20 wt%. In addition, the composite shows excellent mechanical performance with tensile stress of 550–750 MPa. The UPEF/BN/PU composite is proved effective in neutrons shielding, making it excellent candidate in neutron radiation-related field, both as functional and structural material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen HB, Ao YY, Liu D et al (2017) Novel neutron shielding alginate based aerogel with extremely low flammability [J]. Ind Eng Chem Res 56(30):8563–8567

    Article  CAS  Google Scholar 

  2. Nagaraja N, Manjunatha HC, Seenappa L et al (2020) Gamma, X-ray and neutron shielding properties of boron polymers [J]. Indian J Pure Appl Phys 58(4):271–276

    Google Scholar 

  3. Huang Y, Zhang W, Liang L et al (2013) A “Sandwich” type of neutron shielding composite filled with boron carbide reinforced by carbon fiber [J]. Chem Eng J 220:143–150

    Article  CAS  Google Scholar 

  4. Zhu S, Shi R, Qu M et al (2021) Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering [J]. Compos Sci Technol 207:108696–108705

    Article  CAS  Google Scholar 

  5. Choi G, Jeon IR, Piao H et al (2018) Highly condensed boron cage cluster anions in 2D carrier and its enhanced antitumor efficiency for boron neutron capture therapy [J]. Adv Func Mater 28(27):1704470–1704477

    Article  Google Scholar 

  6. Nambiar S, Yeow JT (2012) Polymer-composite materials for radiation protection [J]. ACS Applied Material Interfaces 4(11):5717–5726

    Article  CAS  Google Scholar 

  7. Tf B, Lyman J, Tobias C (1972) Visual perception of accelerated nitrogen nuclei interacting with the human retina [J]. Nature 239(5369):209–220

    Article  Google Scholar 

  8. More CV, Alsayed Z, Badawi MS et al (2021) Polymeric composite materials for radiation shielding: a review [J]. Environ Chem Lett 19:2057–2090

    Article  CAS  Google Scholar 

  9. Lu T, Zhang Y, Wong M et al (2017) Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station [J]. Life Sciences in Space Research 12:24–31

    Article  Google Scholar 

  10. Mahesh VP, Nair PS, Rajan TPD et al (2011) Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid–metal stir-casting technique [J]. J Compos Mater 45(23):2371–2378

    Article  CAS  Google Scholar 

  11. Singh VP, Badiger NM (2015) Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons [J]. Glass Phys Chem 41(3):276–283

    Article  CAS  Google Scholar 

  12. Sariyer D, Kucer R (2020) Effect of different materials to concrete as neutron shielding application [J]. Acta Phys Pol, A 137(4):477–479

    Article  CAS  Google Scholar 

  13. Badhwar GD, Cucinotta FA (2000) A comparison of depth dependence of dose and linear energy transfer spectra in aluminum and polyethylene [J]. Radiat Res 153(1):1–8

    Article  CAS  Google Scholar 

  14. Li ZF, Xue XX, Duan PN et al (2012) Preparation and thermal/fast neutron shielding properties of novel boron containing ore composites [J]. Mater Sci Forum 743:613–622

    Google Scholar 

  15. Agosteo S, Mereghetti A, Sagia E et al (2014) Shielding data for hadron-therapy ion accelerators: attenuation of secondary radiation in concrete [J]. Nucl Instrum Methods Phys Res, Sect B 319:154–167

    Article  CAS  Google Scholar 

  16. Calzada E, Grünauer F, Schillinger B et al (2011) Reusable shielding material for neutron-and gamma-radiation [J]. Nucl Instrum Methods Phys Res, Sect A 651(1):77–80

    Article  CAS  Google Scholar 

  17. El-Khayatt AM, El-Sayed AA (2009) MERCSF-N: a program for the calculation of fast neutron removal cross sections in composite shields [J]. Ann Nucl Energy 36(6):832–836

    Article  CAS  Google Scholar 

  18. Almurayshid M, Alssalim Y, Aksouh F et al (2021) Development of new lead-free composite materials as potential radiation shields [J]. Materials 14:17–27

    Article  Google Scholar 

  19. Zhang X, Yang M, Zhang X et al (2017) Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure [J]. Compos Sci Technol 150:16–23

    Article  CAS  Google Scholar 

  20. Zhang X, Zhang X, Guo S (2019) Simple approach to developing high-efficiency neutron shielding composites [J]. Polym Eng Sci 59(s2):E348–E355

    Article  CAS  Google Scholar 

  21. Herrman K, Baxter LN, Mishra K et al (2019) Mechanical characterization of polyethylene-based thermoplastic composite materials for radiation shielding [J]. Composites Communications 13:37–41

    Article  Google Scholar 

  22. Guetersloh S, Zeitlin C, Heilbronn L et al (2006) Polyethylene as a radiation shielding standard in simulated cosmic-ray environments [J]. Nucl Instrum Methods Phys Res, Sect B 252(2):319–332

    Article  CAS  Google Scholar 

  23. Hughes GB, Mani V, Prasad NS et al (2016) Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with gadolinium and boron nanoparticles for radiation shielding [J]. Planetary Defense and Space Environment Applications 9981:1–10

    Google Scholar 

  24. Cao X, Xue X, Jiang T et al (2010) Mechanical properties of UHMWPE/Sm2O3 composite shielding material [J]. J Rare Earths 28:482–484

    Article  Google Scholar 

  25. Firouzi D, Ching CY, Rizvi SN et al (2019) Development of oxygen-plasma-surface-treated UHMWPE fabric coated with a mixture of SiC/polyurethane for protection against puncture and needle threats [J]. Fibers 7(5):46–59

    Article  CAS  Google Scholar 

  26. Du J, Wang Z, Yu J et al (2018) Ultrahigh-strength ultrahigh molecular weight polyethylene (UHMWPE)-based fiber electrode for high performance flexible supercapacitors [J]. Adv Func Mater 28(20):1707351–1707361

    Article  Google Scholar 

  27. Chih A, Ansón-Casaos A, Puértolas JA (2017) Frictional and mechanical behaviour of graphene/UHMWPE composite coatings [J]. Tribol Int 116:295–302

    Article  CAS  Google Scholar 

  28. Chen S, Cao Y, Feng J (2014) Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites [J]. ACS Applied Material Interfaces 6(1):349–356

    Article  CAS  Google Scholar 

  29. Candadai AA, Weibel JA, Marconnet AM (2019) Thermal conductivity of ultrahigh molecular weight polyethylene: from fibers to fabrics [J]. ACS Applied Polymer Materials 2(2):437–447

    Article  Google Scholar 

  30. Zhong WH, Sui G, Jana S et al (2009) Cosmic radiation shielding tests for UHMWPE fiber/nano-epoxy composites [J]. Compos Sci Technol 69(13):2093–2097

    Article  CAS  Google Scholar 

  31. Özdemir T, Güngör A, Reyhancan İA (2017) Flexible neutron shielding composite material of EPDM rubber with boron trioxide: mechanical, thermal investigations and neutron shielding tests [J]. Radiat Phys Chem 131:7–12

    Article  Google Scholar 

  32. Kim J, Lee B-C, Uhm YR et al (2014) Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites [J]. J Nucl Mater 453(1–3):48–53

    Article  CAS  Google Scholar 

  33. Han H, Sun H, Lei F et al (2021) Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management [J]. ES Materials & Manufacturing 15:53–64

    Google Scholar 

  34. Zhang X, Dong J, Pan D et al (2021) Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties. Adv Compos Hybrid Mater 1–11

  35. Tamayo P, Thomas C, Rico J et al (2020) Review on neutron-absorbing fillers [J]. Micro and Nanostructured Composite Materials for Neutron Shielding Applications 2:25–52

    Article  Google Scholar 

  36. Gao S, Zhao X, Fu Q et al (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells [J]. J Mater Sci Technol 126:152–160

    Article  Google Scholar 

  37. Pan D, Yang G, Abo-Dief HM et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites [J]. Nano-Micro Letters 14(1):117–135

    Article  Google Scholar 

  38. Shang Y, Yang G, Su F et al (2020) Multilayer polyethylene/hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity [J]. Composites Communications 19:147–153

    Article  Google Scholar 

  39. Xie P, Liu Y, Feng M et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption [J]. Advanced Composites and Hybrid Materials 4(1):173–185

    Article  CAS  Google Scholar 

  40. Qi G, Liu Y, Chen L et al (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness [J]. Advanced Composites and Hybrid Materials 4(4):1226–1238

    Article  CAS  Google Scholar 

  41. Wu H, Sun H, Han F et al (2021) Negative permittivity behavior in flexible carbon nanofibers- polydimethylsiloxane films [J]. Engineered Science 17:113–120

    Google Scholar 

  42. Wu H, Zhong Y, Tang Y et al (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme [J]. Advanced Composites and Hybrid Materials 5(1):419–430

    Article  Google Scholar 

  43. Xie P, Zhang Z, Wang Z et al (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures [J]. Research 2019:1021368–1021378

    Article  CAS  Google Scholar 

  44. Soltani Z, Beigzadeh A, Ziaie F et al (2016) Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies [J]. Radiat Phys Chem 127:182–187

    Article  CAS  Google Scholar 

  45. Schrempp-Koops L (2013) Size effects on the efficiency of neutron shielding in nanocomposites– a full-range analysis [J]. Int J Nanosci 12(03):1350015–1350023

    Article  Google Scholar 

  46. Chen F, Xiao H, Peng ZQ et al (2021) Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability [J]. Advanced Composites and Hybrid Materials 4(4):1048–1058

    Article  CAS  Google Scholar 

  47. Yan H, Dai X, Ruan K et al (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@ Al2O3 fillers [J]. Advanced Composites and Hybrid Materials 4(1):36–50

    Article  CAS  Google Scholar 

  48. Yang D, Ni Y, Kong X et al (2019) Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant [J]. Compos Sci Technol 177:18–25

    Article  CAS  Google Scholar 

  49. Wang N, Guo S, Liao J et al (2019) Surface modification of boron nitride by bio-inspired polydopamine and different chain length polyethylenimine co-depositing [J]. Polym Adv Technol 30(11):2918–2926

    Article  CAS  Google Scholar 

  50. Kim Y, Kim J (2020) Carbonization of polydopamine-coating layers on boron nitride for thermal conductivity enhancement in hybrid polyvinyl alcohol (PVA) composites [J]. Polymers (Basel) 12(6):1410–1420

    Article  Google Scholar 

  51. Kim K, Kim M, Kim J (2014) Enhancement of the thermal and mechanical properties of a surface-modified boron nitride-polyurethane composite [J]. Polym Adv Technol 25(8):791–798

    Article  CAS  Google Scholar 

  52. Chaurasia A, Parashar A, Mulik RS (2020) Effect of hexagonal boron nitride nanoplatelet on crystal nucleation, mechanical behavior, and thermal stability of high-density polyethylene-based nanocomposites [J]. Macromol Mater Eng 305(7):2000248–2000259

    Article  CAS  Google Scholar 

  53. Clausi M, Zahid M, Shayganpour A et al (2022) Polyimide foam composites with nano-boron nitride (BN) and silicon carbide (SiC) for latent heat storage. Adv Compos Hybrid Mater 1–15

  54. Liu C, Fang Q, Wang D et al (2019) Carbon and boron nitride nanotubes: structure, property and fabrication [J]. ES Materials & Manufacturing 3(2):2–15

    Google Scholar 

  55. Yang H, Ng B C, Yu HC et al (2021) Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet. Adv Compos Hybrid Mater 1–8

  56. Peng M, Sun L, Chen L et al (2016) A new small-angle neutron scattering spectrometer at China Mianyang research reactor [J]. Nucl Instrum Methods Phys Res, Sect A 810:63–67

    Article  CAS  Google Scholar 

  57. Chen L, Sun L, Wang Y et al (2016) Small-angle neutron scattering spectrometer Suanni equipped with ultra-thin biconcave focusing lenses [J]. J Appl Crystallogr 49(4):1388–1393

    Article  CAS  Google Scholar 

  58. Stockdale TA, Cole DP, Staniszewski JM et al (2020) Hierarchical mechanisms of lateral interactions in high-performance fibers [J]. ACS Applied Material Interfaces 12(19):22256–22267

    Article  CAS  Google Scholar 

  59. Lu Y, Lyu D, Tang Y et al (2020) Effect of αc-relaxation on the large strain cavitation in polyethylene [J]. Polymer 210:123049–123061

    Article  CAS  Google Scholar 

  60. Kim K, Kim M, Hwang Y et al (2014) Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity [J]. Ceram Int 40(1):2047–2056

    Article  CAS  Google Scholar 

  61. El-Khayatt AM (2011) NXcom – a program for calculating attenuation coefficients of fast neutrons and gamma-rays [J]. Ann Nucl Energy 38(1):128–132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Dong Liu (Mianyang) for the kindly help on neutron shielding efficiency measurements.

Funding

Thanks for the financial support from National Natural Science Foundation of China (21704096, 51703217). The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by grant code 22UQU4281758DSR03.

Author information

Authors and Affiliations

Authors

Contributions

Wei Zhang: methodology, formal analysis, investigation, data curation, writing–original draft. Yao Feng: investigation, data curation. Jalal T. Althakafy: discussions and property analysis, formal analysis. Yi Liu: investigation, data curation. Hala M. Abo-Dief: discussions and property analysis, formal analysis. Mina Huang: discussions and property analysis, formal analysis. Liangchun Zhou: investigation, data curation. Fengmei Su: conceptualization, writing–review and editing, project administration, supervision. Chuntai Liu: supervision, writing–review and editing. Changyu Shen: supervision.

Corresponding authors

Correspondence to Fengmei Su or Chuntai Liu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Feng, Y., Althakafy, J.T. et al. Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv Compos Hybrid Mater 5, 2012–2020 (2022). https://doi.org/10.1007/s42114-022-00539-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00539-7

Keywords

Navigation