Skip to main content

Advertisement

Log in

Critical operation factors and proposed testing protocol of nanofiltration membranes for developing advanced membrane materials

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Nanofiltration (NF) is an environmental-friendly and energetic-efficient technique for small molecule or ion separations compared to traditional energy-intensive separation processes. However, during the journey to discovering advanced NF membrane materials using a typical dead-end device, there is an obvious discrepancy on testing methodologies/protocols of NF membranes reported in contemporary literatures, which actually results in the significant data-reliability issues. This critical issue made the evaluation of various nanofiltration membranes so confusing and misleading because of the unfair comparison on NF performance. Therefore, it is urgent to guide the membrane society on the real factors affecting the data accuracy and standardize the protocol for nanofiltration test to develop advanced NF membrane materials. In this study, we have carried out a series of designed experiments to unify the standardized separation rate indicators of nanofiltration membranes by comparing flux, permeance, and permeability. The effects of external factors on separation efficiency (rejection) of NF membranes were investigated in detail, which is also analysed and discussed on the basic theory. The dead volume, rotor, and adsorption are proven to be the pivotal indicators for achieving accurate separation efficiency, which offers insight for reliable testing of nanofiltration membranes. Therefore, a protocol was proposed for evaluating accurate separation performance of nanofiltration membranes to obtain the reliable data, which benefits for fair performance comparison to advance NF membrane materials and makes the researchers to better understand the current confusing data reported in the literatures.

Graphical abstract

The accurate testing protocols of NF membranes were clarified, which is important for the development of advanced nanofiltration materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Z, Yang HC, He F, Peng S, Darling SB (2019) Mussel-inspired surface engineering for water-remediation materials. Matter 1:115–155

    Article  Google Scholar 

  2. Wang Y, Ma X, Ghanem BS, Alghunaimi F, Pinnau I, Han Y (2018) Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater Today Nano 3:69–95

    Article  Google Scholar 

  3. Zhang J, Li ZY, Zhan K, Sun RQ, Sheng ZZ (2019) Two dimensional nanomaterial-based separation membranes. Electrophoresis 40:2029–2040

    Article  CAS  Google Scholar 

  4. Zhou Z, Li X, Guo D, Shinde DB, Lai Z (2020) Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. Nat Commun 1:1–9

    Google Scholar 

  5. Hou J, Zhang H, Simon GP, Wang H (2020) Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Adv Mater 32:1902009

    Article  CAS  Google Scholar 

  6. Huang JH, Cheng XQ, Zhang Y, Wang K, Liang H, Wang P, Ma J, Shao L (2020) Polyelectrolyte grafted MOFs enable conjugated membranes for molecular separations in dual solvent systems. Cell Reports Physical Science 1:100034

  7. Yang X, You F, Zhao Y, Bai Y, Shao L (2018) Confinedly assembling surface nanocoating to manipulate nanofiltration membranes for highly-efficient dye removal. ES Energy Environ 1:106–113

    Google Scholar 

  8. Shen L, Tian L, Zuo J, Zhang X, Sun S, Wang Y (2019) Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination. Adv Compos Hybrid Mater 2:51–69

    Article  CAS  Google Scholar 

  9. Lively RP, Sholl DS (2017) From water to organics in membrane separations. Nat Mater 16:276–279

    Article  CAS  Google Scholar 

  10. Koros WJ, Zhang C (2017) Materials for next-generation molecularly selective synthetic membranes. Nat Mater 16:289

    Article  CAS  Google Scholar 

  11. Cheng XQ, Konstas K, Doherty CM, Wood CD, Mulet X, Xie Z, Ng D, Hill MR, Shao L, Lau CH (2017) Hyper-cross-linked additives that impede aging and enhance permeability in thin polyacetylene films for organic solvent nanofiltration. ACS Appl Mater Interfaces 9:14401–14408

    Article  CAS  Google Scholar 

  12. Li C, Li J, Zhang WH, Wang N, Ji S, An QF (2020) Enhanced permeance for PDMS organic solvent nanofiltration membranes using modified mesoporous silica nanoparticles. J Membr Sci 612:118257

  13. Cao XL, Zhou FY, Cai J, Zhao Y, Liu ML, Xu L, Sun SP (2021) High-permeability and anti-fouling nanofiltration membranes decorated by asymmetric organic phosphate. J Membr Sci 617:118667

  14. Imbrogno A, Schäfer AI (2019) Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end). J Membr Sci 585:67–80

    Article  CAS  Google Scholar 

  15. Becht NO, Malik DJ, Tarleton ES (2008) Tarleton, Evaluation and comparison of protein ultrafiltration test results: dead-end stirred cell compared with a cross-flow system. Sep Purif Technol 62:228–239

    Article  CAS  Google Scholar 

  16. Oatley-Radcliffe DL, Walters M, Ainscough TJ, Williams PM, Mohammad AW, Hilal N (2017) Nanofiltration membranes and processes: a review of research trends over the past decade. J Water Process Eng 19:164–171

    Article  Google Scholar 

  17. Guo J, Bao H, Zhang Y, Shen X, Kim JK, Ma J, Shao L (2021) Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Membr Sci 619:118791

  18. Zhang Y, Guo J, Gang H, Bai Y, Shao L (2021) Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci Adv 7:eabe8706

  19. Zheng T, Zou X, Li M, Zhou S, Zhao Y, Zhong Z (2021) Two-dimensional graphitic carbon nitride for membrane separation. Chin J Chem Eng

  20. Huang JH, Cheng XQ, Bai Q, Zhang YJ, Wang K, Ma J, Shao L (2021) Ultrafast poly(sodium methacrylate)-grafted UiO-66-incorporated nanocomposite membranes enable excellent active pharmaceutical ingredient concentration. Ind Eng Chem Res 60:6287–6297

    Article  CAS  Google Scholar 

  21. Yang F, Sadam H, Zhang Y, Xia J, Yang X, Long J, Li S, Shao L (2020) A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 225:115845

  22. Zhang Y, Cheng X, Jiang X, Urban JJ, Lau CH, Liu S, Shao L (2020) Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Mater Today 36:40–47

    Article  CAS  Google Scholar 

  23. Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z (2019) Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2:1–33

    Article  Google Scholar 

  24. Zhang W, Yang P (2019) 2D bio-nanostructures fabricated by supramolecular self-assembly of protein, peptide, or peptoid. Adv Compos Hybrid Mater 2:201–213

    Article  CAS  Google Scholar 

  25. Adak NC, Chhetri S, Murmu NC, Samanta P, Kuila T (2019) Analytical and experimental investigation on magnetorheological behavior of CoFe2O4-rGO-incorporated epoxy fluid composites. Adv Compos Hybrid Mater 2:266–278

    Article  CAS  Google Scholar 

  26. Madhusudhana AM, Mohana KNS, Hegde MB, Nayak SR, Rajitha K, Swamy NK (2020) Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv Compos Hybrid Mater 3:141–155

    Article  CAS  Google Scholar 

  27. Lin C, Liu B, Pu L, Sun Y, Xue Y, Chang M, Li X, Lu X, Chen R, Zhang J (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4:339–349

    Article  CAS  Google Scholar 

  28. Sadeghi B, Cavaliere P, Roeen GA, Nosko M, Shamanian M, Trembošová V, Nagy Š, Ebrahimzadeh N (2019) Hot rolling of MWCNTs reinforced Al matrix composites produced via spark plasma sintering. Adv Compos Hybrid Mater 2:549–570

    Article  CAS  Google Scholar 

  29. Bhongsuwan D, Bhongsuwan T, Na-Suwan J (2002) Construction of a dead-end type micro- to R.O. membrane test cell and performance test with the laboratory-made and commercial membranes, Warasan. Songkhla. Nakharin

  30. Wardrip NC, Arnusch CJ (2016) Three-dimensionally printed microfluidic cross-flow system for ultrafiltration/nanofiltration membrane performance testing. J Vis Exp 108:53556

    Google Scholar 

  31. Babu J, Murthy ZVP (2017) Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Sep Purif Technol 183:66–72

    Article  CAS  Google Scholar 

  32. Wang T, Lu J, Mao L, Wang Z (2016) Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane. J Membr Sci 515:125–133

    Article  CAS  Google Scholar 

  33. Guo D, Xiao Y, Li T, Zhou Q, Shen L, Li R, Xu Y, Lin H (2020) Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J Colloid Interface Sci 560:273–283

    Article  CAS  Google Scholar 

  34. Chau J, Sirkar KK (2021) Organic solvent mixture separation during reverse osmosis and nanofiltration by a perfluorodioxole copolymer membrane. J Membr Sci 618:118663

  35. Mulhearn WD, Oleshko VP, Stafford CM (2021) Thickness-dependent permeance of molecular layer-by-layer polyamide membranes. J Membr Sci 618:118637

  36. Prabhu P, Mohamed Iqbal S, Balaji A, Karthikeyan B (2019) Experimental investigation of mechanical and machining parameters of hybrid nanoclay glass fiber-reinforced polyester composites. Adv Compos Hybrid Mater 2:93–101

    Article  CAS  Google Scholar 

  37. Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3:344–353

    Article  CAS  Google Scholar 

  38. Amalraj A, Raj KKJ, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization, and antimicrobial activity of chitosan/gum arabic/polyethylene glycol composite films incorporated with black pepper essential oil and ginger essential oil as potential packaging and wound dressing materials. Adv Compos Hybrid Mater 3:485–497

    Article  CAS  Google Scholar 

  39. Cheng XQ, Wang ZX, Jiang X, Li TX, Lau CH, Guo ZH, Ma J, Shao L (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283

    Article  CAS  Google Scholar 

  40. Zhou R, Sun C, Bai B Wall (2021) friction should be decoupled from fluid viscosity for the prediction of nanoscale flow. J Chem Phys 154:074709

  41. Cheng XQ, Liu Y, Guo Z, Shao L (2015) Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. J Membr Sci 493:156–166

    Article  CAS  Google Scholar 

  42. Cheng XQ, Zhang C, Wang ZX, Shao L (2016) Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. J Membr Sci 499:326–334

    Article  CAS  Google Scholar 

  43. Nagy E, Hegedüs I, Rehman D, Wei QJ, John HLLV (2021) The need for accurate osmotic pressure and mass transfer resistances in modeling osmotically driven membrane processes. Membranes 11:128

    Article  CAS  Google Scholar 

  44. Zhou Z, Lee YJ, Chung ST (2014) Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chem Eng J 249:236–245

    Article  CAS  Google Scholar 

  45. Robinson JP, Tarleton ES, Millington CR, Nijmeijer, (2004) A solvent flux through dense polymeric nanofiltration membranes. J Membr Sci 230:29–37

    Article  CAS  Google Scholar 

  46. Marchetti P, Livingston AG (2015) Predictive membrane transport models for organic solvent nanofiltration: how complex do we need to be? J Membr Sci 476:530–553

    Article  CAS  Google Scholar 

  47. Yin C, Fang S, Shi X, Zhang Z, Wang Y (2021) Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration. J Membr Sci 618:118727

  48. Zeng H, Yu Z, Shao L, Li X, Zhu M, Liu Y, Feng X, Zhu X (2021) A novel strategy for enhancing the performance of membranes for dyes separation: Embedding PAA@UiO-66-NH2 between graphene oxide sheets. Chem Eng J 403:126281

  49. Liu L, Yu L, Borjigin B, Liu Q, Zhao C, Hou D (2021) Fabrication of thin-film composite nanofiltration membranes with improved performance using β-cyclodextrin as monomer for efficient separation of dye/salt mixtures. Appl Surf Sci 539:148284

  50. Su YY, Yan X, Chen Y, Guo XJ, Chen XF, Lang WZ (2021) Facile fabrication of COF-LZU1/PES composite membrane via interfacial polymerization on microfiltration substrate for dye/salt separation. J Membr Sci 618:118706

  51. Hu M, Cui Z, Yang S, Li J, Shi W, Zhang W, Matindi C, He B, Fang K, Li J (2021) Pregelation of sulfonated polysulfone and water for tailoring the morphology and properties of polyethersulfone ultrafiltration membranes for dye/salt selective separation. J Membr Sci 618:118746

  52. Ramalingam S, Subramania A (2021) Effective removal of nitrates from the drinking water by chemical and electrochemical methods. Engineered Science 15:80–88

    CAS  Google Scholar 

  53. Zhang X, Allegrezza AE, Zhao Q, Wang Z (2013) Ceramic nanowire membranes and methods of making the same

  54. Gourley L, Gauthie SF, Pouliot Y, Mollé D, Maubois JL (1998) Identification of casein peptides interacting with polysulfone ultrafiltration membranes. Dairy Sci Technol 78:633–646

    Article  CAS  Google Scholar 

  55. Kwon YN, Shih K, Tang C, Leckie JO (2012) Adsorption of perfluorinated compounds on thin-film composite polyamide membranes. J Appl Polym Sci 124:1042–1049

    Article  CAS  Google Scholar 

  56. Fenton JL, Burke DW, Qian D, Cruz MODL, Dichtel WR (2021) Polycrystalline covalent organic framework films act as adsorbents, not membranes. J Am Chem Soc 143:1466–1473

    Article  CAS  Google Scholar 

  57. Déon S, Escoda A, Fievet P (2011) A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chem Eng Sci 66:2823–2832

    Article  Google Scholar 

  58. Bhanushali D, Kloos S, Bhattacharyya D (2002) Solute transport in solvent-resistant nanofiltration membranes for non-aqueous systems: experimental results and the role of solute–solvent coupling. J Membr Sci 208:343–359

    Article  CAS  Google Scholar 

  59. Gara N, Kedem O (2001) Experimental analysis of negative salt rejection in nanofiltration membranes. J Membr Sci 185:223–236

    Article  Google Scholar 

  60. Porter MC (1972) Concentration polarization with membrane ultrafiltration. Ind Eng Chem Prod Res Dev 11:234–248

    CAS  Google Scholar 

  61. Bhattacharya S, Hwang ST (1997) Concentration polarization, separation factor, and Peclet number in membrane processes. J Membr Sci 132:73–90

    Article  CAS  Google Scholar 

  62. Chen JC, Li Q, Elimelech M (2004) In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv Colloid Interface Sci 107:83–108

    Article  CAS  Google Scholar 

  63. Gilron J, Gara N, Kedem O (2001) Experimental analysis of negative salt rejection in nanofiltration membranes. J Membr Sci 185:223–236

    Article  CAS  Google Scholar 

  64. Peeva LG, Gibbins E, Luthra SS, White LS, Stateva RP, Livingston AG (2004) Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration. J Membr Sci 236:121–136

    Article  CAS  Google Scholar 

  65. Zhang MY, Wang XP, Lin R, Liu Y, Chen FS, Cui LS, Meng XM, Hou J (2021) Improving the hydrostability of ZIF-8 membrane by biomolecule towards enhanced nanofiltration performance for dye removal. J Membr Sci 618:118630

  66. Cheng X, Qin Y, Ye Y, Chen X, Wang K, Zhang Y, Figoli A, Drioli E (2020) Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment. Chem Eng J 127976

  67. Xu Y, Xiao Y, Zhang W, Lin H, Shen L, Li R, Jiao Y, Liao BQ (2021) Plant polyphenol intermediated metal-organic framework (MOF) membranes for efficient desalination. J Membr Sci 618:118726

  68. Liu Y, Bai L, Zhu X, Xu D, Li G, Liang H, Wiesner MR (2021) The role of carboxylated cellulose nanocrystals placement in the performance of thin-film composite (TFC) membrane. J Membr Sci 617:118581

  69. Cao XL, Yan YN, Zhou FY, Sun SP (2020) Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J Membr Sci 595:117476

  70. Sarkar P, Modak S, Karan S (2021) Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration. Adv Funct Mater 31:2007054

    Article  CAS  Google Scholar 

  71. Labbez C, Fievet P, Szymczyk A, Vidonne A, Foissy A, Pagetti J (2003) Retention of mineral salts by a polyamide nanofiltration membrane. Sep Purif Technol 30:47–55

    Article  CAS  Google Scholar 

  72. Schaep J, Vandecasteele C, Mohammad AW, Bowen WR (1999) Analysis of the salt retention of nanofiltration membranes using the donnan–steric partitioning pore model. Sep Purif Technol 34:3009–3030

    CAS  Google Scholar 

  73. Bargeman G, Westerink JB, Guerra Miguez O, Wessling M (2014) The effect of NaCl and glucose concentration on retentions for nanofiltration membranes processing concentrated solutions. Sep Purif Technol 134:46–57

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (21878062, 22111530113, 21905067), the Natural Science Foundation of Heilongjiang Province for Distinguished Young Scholars (JQ2020B001), Heilongjiang Touyan Team (HITTY-20190033), the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (2020DX02), China Postdoctoral Science Foundation (2018M640295), the National Key Research and Development Program of China (2018YFC0408001), and the Shandong Province Natural Science Foundation (ZR2018BEM031), National Regional Innovation Foundation (2017QYCX09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Shao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jun Hui Huang·and Xi Quan Cheng contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 782 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J.H., Cheng, X.Q., Wu, Y.D. et al. Critical operation factors and proposed testing protocol of nanofiltration membranes for developing advanced membrane materials. Adv Compos Hybrid Mater 4, 1092–1101 (2021). https://doi.org/10.1007/s42114-021-00334-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00334-w

Keywords

Navigation