Skip to main content
Log in

Hot rolling of MWCNTs reinforced Al matrix composites produced via spark plasma sintering

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Aluminum/CNT nanocomposite sheets, with appropriate dispersion and interfacial bonding, were fabricated by a combination of powder metallurgy, spark plasma sintering (SPS), and hot rolling. The effects of CNT content as well as plastic deformation, on the microstructure and mechanical properties of the obtained nanocomposite, were investigated. The composite reinforced by 0.5 wt.% CNTs showed an optimal dispersion of CNTs into the aluminum matrix after both SPS and hot rolling. Minimum CNT damage and minimum carbide formation were observed after hot rolling. The best comprehensive mechanical properties corresponded to the sheet of Al-0.5 wt.% CNT nanocomposite thanks to the strong interfacial bonding between Al and CNTs, full densification of the nanocomposites as well as the uniform dispersion of the CNTs into the aluminum matrix. Hardness measurements showed that the maximum hardness was obtained for sheets containing 1.5 wt.% CNTs in both the as-SPS and the as-hot rolled conditions. Load transfer, Orowan, and grain size strengthening mechanisms could affect the increase of strength as well as the combination of strength and ductility of the sheets of Al-CNT nanocomposites.

Aluminum/CNT nanocomposites were hot rolled without reinforcing damage. The optimal dispersion of 1.5% CNTs led to increased mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bakshi S, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev 55(1):41–64

    Article  CAS  Google Scholar 

  2. Choi H, Shin J, Min B, Park J, Bae D (2011) Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J Mater Res 24(8):2610–2616

    Article  Google Scholar 

  3. Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R: Rep 74(10):281–350

    Article  Google Scholar 

  4. Pérez-Bustamante R, Gómez-Esparza C, Estrada-Guel I, Miki-Yoshida M, Licea-Jiménez L, Pérez-García S, Martínez-Sánchez R (2009) Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Mater Sci Eng A 502(1–2):159–163

    Article  CAS  Google Scholar 

  5. Esawi AMK, Morsi K, Sayed A, Tahera M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70(16):2237–2241

    Article  CAS  Google Scholar 

  6. Zhou WW, Yamamoto G, Fan Y, Kwon H, Hashida T, Kawasaki A (2016) In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 106:37–47

    Article  CAS  Google Scholar 

  7. Li Y, Wang K, Wei J, Gu Z, Wang Z, Luo J, Wu D (2005) Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 43(1):31–35

    Article  CAS  Google Scholar 

  8. Azarniya A, Azarniya A, Sovizi S, Hosseini HRM, Varol T, Kawasaki A, Ramakrishna S (2017) Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites. Prog Mater Sci 90:276–324

    Article  CAS  Google Scholar 

  9. Sridhar I, Narayanan KR (2009) Processing and characterization of MWCNT reinforced aluminum matrix composites. J Mater Sci 44(7):1750–1756

    Article  CAS  Google Scholar 

  10. Maiti A, Reddy L, Chen F, Zhang L, Schoenung J, Lavernia E, Laha T (2015) Carbon nanotube-reinforced Al alloy-based nanocomposites via spark plasma sintering. J Compos Mater 49(16):1937–1946

    Article  CAS  Google Scholar 

  11. Bakshi SR, Singh V, Seal S, Agarwal A (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Technol 203(10–11):1544–1554

    Article  CAS  Google Scholar 

  12. Chen B, Kondoh K, Imai H, Umeda J, Takahashi M (2016) Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scr Mater 113:158–162

    Article  CAS  Google Scholar 

  13. Guo B, Ni S, Yi J, Shen R, Tang Z, Du Y, Song M (2017) Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater Sci Eng A 698(Supplement C):282–288

    Article  CAS  Google Scholar 

  14. George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater 53(10):1159–1163

    Article  CAS  Google Scholar 

  15. Kwon H, Park DH, Silvain JF, Kawasaki A (2010) Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol 70(3):546–550

    Article  CAS  Google Scholar 

  16. Kwon H, Kawasaki A (2009) Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures. J Nanosci Nanotechnol 9(11):6542–6548

    Article  CAS  Google Scholar 

  17. Ghesmati Tabrizi S, Sajjadi SA, Babakhani A, Lu W (2015) Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A 624(Supplement C):271–278

    Article  CAS  Google Scholar 

  18. Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3):570–577

    Article  CAS  Google Scholar 

  19. Zare H, Jahedi M, Toroghinejad MR, Meratian M, Knezevic M (2016) Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing. Mater Sci Eng A 670:205–216

    Article  CAS  Google Scholar 

  20. Taheri-Mandarjani M, Zarei-Hanzaki A, Abedi HR (2015) Hot ductility behavior of an extruded 7075 aluminum alloy. Mater Sci Eng A 637:107–122

    Article  CAS  Google Scholar 

  21. Zare H, Jahedi M, Toroghinejad MR, Meratian M, Knezevic M (2016) Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Mater Des 106:112–119

    Article  CAS  Google Scholar 

  22. Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629

    Article  CAS  Google Scholar 

  23. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2017) Influence of Al2O3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform 26(6):2928–2936

    Article  CAS  Google Scholar 

  24. Jiang L, Li ZQ, Fan GL, Cao LL, Zhang D (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5):1993–1998

    Article  CAS  Google Scholar 

  25. Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49(2):533–544

    Article  CAS  Google Scholar 

  26. Yang X, Zou T, Shi C, Liu E, He C, Zhao N (2016) Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater Sci Eng A 660:11–18

    Article  CAS  Google Scholar 

  27. Wei H, Li ZQ, Xiong DB, Tan ZQ, Fan GL, Qin Z, Zhang D (2014) Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr Mater 75:30–33

    Article  CAS  Google Scholar 

  28. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, le Valerini D (2018) Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering. Int J Mater Res 109(1):50–62

    Article  CAS  Google Scholar 

  29. Cavaliere P, Jahantigh F, Shabani A, Sadeghi B (2018) Influence of SiO2 nanoparticles on the microstructure and mechanical properties of Al matrix nanocomposites fabricated by spark plasma sintering. Compos Part B 146:60–68

    Article  CAS  Google Scholar 

  30. Sadeghi B, Cavaliere P, Perrone A (2018) Effect of Al2O3, SiO2 and carbon nanotubes on the microstructural and mechanical behavior of spark plasma sintered aluminum based nanocomposites. Part Sci Technol 2018:1–8

    Article  CAS  Google Scholar 

  31. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Sanayei M, Szpunar JA (2018) Microstructural behaviour of spark plasma sintered composites containing bimodal micro- and nano-sized Al2O3 particles. Powder Metall 61(1):50–63

    Article  CAS  Google Scholar 

  32. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P (2018) Effect of processing parameters on microstructural and mechanical properties of aluminum–SiO2 nanocomposites produced by spark plasma sintering. Int J Mater Res 109(5):422–430

    Article  CAS  Google Scholar 

  33. Simões S, Viana F, Reis MAL, Vieira MF (2015) Influence of dispersion/mixture time on mechanical properties of Al–CNTs nanocomposites. Compos Struct 126:114–122

    Article  Google Scholar 

  34. Simoes S, Viana F, Reis MAL, Vieira MF (2014) Improved dispersion of carbon nanotubes in aluminum nanocomposites. Compos Struct 108:992–1000

    Article  Google Scholar 

  35. Kurita H, Kwon H, Estili M, Kawasaki A (2011) Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans 52(10):1960–1965

    Article  CAS  Google Scholar 

  36. Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B 72(8):085401

    Article  CAS  Google Scholar 

  37. Delhaes P, Couzi M, Trinquecoste M, Dentzer J, Hamidou H, Vix-Guterl C (2006) A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon 44(14):3005–3013

    Article  CAS  Google Scholar 

  38. Zhu X, Zhao Y-G, Wu M, Wang H-Y, Jiang Q-C (2016) Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes. J Alloys Compd 674:145–152

    Article  CAS  Google Scholar 

  39. Keszler A, Nemes L, Ahmad S, Fang X (2004) Characterization of carbon nanotube materials by Raman spectroscopy and microscopy—a case study of multiwalled and singlewalled samples. J Optoelectron Adv Mater 6(4):1269–1274

    CAS  Google Scholar 

  40. Berber S, Oshiyama A (2006) Reconstruction of mono-vacancies in carbon nanotubes: atomic relaxation vs. spin polarization. Phys B Cond Matter 376:272–275

    Article  CAS  Google Scholar 

  41. Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844

    Article  CAS  Google Scholar 

  42. Bakshi SR, Keshri AK, Singh V, Seal S, Agarwal A (2009) Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification. J Alloys Compd 481(1–2):207–213

    Article  CAS  Google Scholar 

  43. Kwon H, Cho S, Leparoux M, Kawasaki A (2012) Dual-nanoparticulate-reinforced aluminum matrix composite materials. Nanotechnology 23(22):225704

    Article  CAS  Google Scholar 

  44. Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. John Wiley & Sons Inc., Hoboken

    Google Scholar 

  45. Kurita H, Estili M, Kwon H, Miyazaki T, Zhou W, Silvain J-F, Kawasaki A (2015) Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Compos A: Appl Sci Manuf 68:133–139

    Article  CAS  Google Scholar 

  46. Kallip K, Leparoux M, AlOgab KA, Clerc S, Deguilhem G, Arroyo Y, Kwon H (2015) Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites. J Alloys Compd 646:710–718

    Article  CAS  Google Scholar 

  47. Laha T, Kuchibhatla S, Seal S, Li W, Agarwal A (2007) Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater 55(3):1059–1066

    Article  CAS  Google Scholar 

  48. Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54(20):5367–5375

    Article  CAS  Google Scholar 

  49. Hasani S, Panjepour M, Shamanian M (2012) The oxidation mechanism of pure aluminum powder particles. Oxid Met 78(3–4):179–195

    Article  CAS  Google Scholar 

  50. Asgharzadeh H, Joo S-H, Kim HS (2014) Consolidation of carbon nanotube reinforced aluminum matrix composites by high-pressure torsion. Metall Mater Trans A 45(9):4129–4137

    Article  CAS  Google Scholar 

  51. Valiev RZ, Zhilyaev AP, Langdon TG (2013) Bulk nanostructured materials: fundamentals and applications. John Wiley & Sons Inc., Hoboken

    Book  Google Scholar 

  52. Okamoto NL, Fujimoto S, Kambara Y, Kawamura M, Chen ZM, Matsunoshita H, Tanaka K, Inui H, George EP (2016) Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci Rep 6:35863

    Article  CAS  Google Scholar 

  53. Hayden H, Moffatt WG, Wulff J (1965) The structure and properties of materials. V. 3. Mechanical behavior. John Wiley and Sons Inc., New York

  54. Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62

    Article  CAS  Google Scholar 

  55. Sadeghi B, Cavaliere P, Shamanian M, Sanayei M, Szpunar JA, Nosko M (2018) Electron backscattered diffraction analysis of friction stir processed nanocomposites produced via spark plasma sintering. J Microscopy 271(2):145–163

    Article  CAS  Google Scholar 

  56. Babu NK, Kallip K, Leparoux M, AlOgab KA, Maeder X, Dasilva YAR (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544

    Article  CAS  Google Scholar 

  57. Kubota M, Wynne BP (2007) Electron backscattering diffraction analysis of mechanically milled and spark plasma sintered pure aluminium. Scr Mater 57(8):719–722

    Article  CAS  Google Scholar 

  58. McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 58(5):349–354

    Article  CAS  Google Scholar 

  59. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2018) Friction stir processing of spark plasma sintered aluminum matrix composites with bimodal micro- and nano-sized reinforcing Al2O3 particles. J Manuf Process 32:412–424

    Article  Google Scholar 

  60. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P (2017) FSW of bimodal reinforced Al-based composites produced via spark plasma sintering. Int J Mater Res 108(12):1045–1054

    Article  CAS  Google Scholar 

  61. Sadeghi B, Shamanian M, Cavaliere P, Ashrafizadeh F, Sanayei M, Szpunar JA (2018) Microstructural and mechanical behavior of bimodal reinforced Al-based composites produced by spark plasma sintering and FSP. Int J Adv Manuf Technol 94(9–12):3903–3916

    Article  Google Scholar 

  62. Lahiri D, Bakshi SR, Keshri AK, Liu Y, Agarwal A (2009) Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater Sci Eng A 523(1–2):263–270

    Article  CAS  Google Scholar 

  63. Casati R (2015) Aluminum matrix composites reinforced with alumina nanoparticles. PoliMi Springer Briefs. https://doi.org/10.1007/978-3-319-27732-5

  64. Liu G, Zhang GJ, Jiang F, Ding XD, Sun YJ, Sun J, Ma E (2013) Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater 12(4):344–350

    Article  CAS  Google Scholar 

  65. Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 2017:1–12

    Google Scholar 

  66. Sadeghi B, Shabani A, Cavaliere P (2018) Hot rolling of spark-plasma-sintered pure aluminium. Powder Metall 2018:1–8

    Google Scholar 

  67. Dudina DV, Bokhonov BB, Olevsky EA (2019) Fabrication of porous materials by spark plasma sintering: a review. Materials 12:541

    Article  Google Scholar 

  68. Sweet G (2014) Advanced sintering techniques of aluminum. Spark plasma sintering. Master of Applied Science Thesis. Dalhousie University Halifax, Nova Scotia

  69. Suárez M, Fernández A, Kessel H, Hennicke J, Menéndez J, Kirchner R, Torrecillas R, Kessel T (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. INTECH Open Access Publisher. https://doi.org/10.5772/53706

  70. Chaim R (2007) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A 443(1–2):25–32

    Article  CAS  Google Scholar 

  71. Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227

    Article  CAS  Google Scholar 

  72. Zhang Z-H, Liu Z-F, Lu J-F, Shen X-B, Wang F-C, Wang Y-D (2014) The sintering mechanism in spark plasma sintering–proof of the occurrence of spark discharge. Scr Mater 81:56–59

    Article  CAS  Google Scholar 

  73. Zadra M, Casari F, Girardini L, Molinari A (2007) Spark plasma sintering of pure aluminium powder: mechanical properties and fracture analysis. Powder Metall 50(1):40–45

    Article  CAS  Google Scholar 

  74. Kwon H, Park DH, Park Y, Silvain JF, Kawasaki A, Park Y (2010) Spark plasma sintering behavior of pure aluminum depending on various sintering temperatures. Met Mater Int 16(1):71–75

    Article  CAS  Google Scholar 

  75. Chen B, Shen J, Ye X, Jia L, Li S, Umeda J, Takahashi M, Kondoh K (2017) Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater 140:317–325

    Article  CAS  Google Scholar 

  76. Ovid'ko IA, Valiev RZ, Zhu YT (2018) Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci 94:462–540

    Article  CAS  Google Scholar 

  77. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy. Mater Charact 37(5):285–294

    Article  CAS  Google Scholar 

  78. Kelly A, Tyson AW (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–350

    Article  CAS  Google Scholar 

  79. Lourie O, Wagner HD (1999) Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Compos Sci Technol 59(6):975–977

    Article  Google Scholar 

  80. Chen B, Li SF, Imai H, Jia L, Umeda J, Takahashi M, Kondoh K (2015) Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Compos Sci Technol 113:1–8

    Article  CAS  Google Scholar 

  81. Nam DH, Cha SI, Lim BK, Park HM, Han DS, Hong SH (2012) Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon 50(7):2417–2423

    Article  CAS  Google Scholar 

  82. Li S, Sun B, Imai H, Kondoh K (2013) Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti-VGCFs system. Carbon 61:216–228

    Article  CAS  Google Scholar 

  83. Habibnejad-Korayem M, Mahmudi R, Poole WJ (2013) Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles. Mater Sci Eng A 567:89–94

    Article  CAS  Google Scholar 

  84. Krausz AS, Krausz K (1996) Unified constitutive laws of plastic deformation. Academic Press, San Diego

    Google Scholar 

  85. Estrin Y (1996) Dislocation-density-related constitutive modeling. In: Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 69–106

  86. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y (2016) Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM 68(4):1216–1226

    Article  CAS  Google Scholar 

  87. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2016) Fundamentals of superior properties in bulk NanoSPD materials. Mater Res Lett 4(1):1–21

    Article  CAS  Google Scholar 

  88. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556

    Article  CAS  Google Scholar 

  89. Kock CC (2003) Ductility in nanostructured and ultra fine-grained materials: recent evidence for optimism. J Metastab Nanocryst Mater 18:9–20

    Google Scholar 

  90. Wang YM, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52(6):1699–1709

    Article  CAS  Google Scholar 

  91. Kwon H, Leparoux M, Kawasaki A (2014) Functionally graded dual-nanoparticulate-reinforced aluminium matrix bulk materials fabricated by spark plasma sintering. J Mater Sci Technol 30(8):736–742

    Article  CAS  Google Scholar 

  92. Liu ZY, Xu SJ, Xiao BL, Xue P, Wang WG, Ma ZY (2012) Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos A Appl Sci Manuf 43(12):2161–2168

    Article  CAS  Google Scholar 

  93. Geng R, Qiu F, Jiang QC (2018) Reinforcement in Al matrix composites: a review of strengthening behavior of nano-sized particles. Adv Eng Mater. https://doi.org/10.1002/adem.201701089

  94. Yoo SJ, Han SH, Kim WJ (2013) Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scr Mater 68(9):711–714

    Article  CAS  Google Scholar 

  95. Munoz-Morris MA, Oca CG, Morris DG (2002) An analysis of strengthening mechanisms in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic. Acta Mater 50(11):2825–2836

    Article  CAS  Google Scholar 

  96. Stoller R, Zinkle S (2000) On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J Nucl Mater 283:349–352

    Article  Google Scholar 

  97. Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  98. Li QQ, Viereckl A, Rottmair CA, Singer RF (2009) Improved processing of carbon nanotube/magnesium alloy composites. Compos Sci Technol 69(7–8):1193–1199

    Article  CAS  Google Scholar 

  99. Ryu HJ, Cha SI, Hong SH (2003) Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J Mater Res 18(12):2851–2858

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Cavaliere.

Ethics declarations

Ethical statement

The ethical standards were respected. The paper is written and submitted following the rules of good scientific practice.

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, B., Cavaliere, P., Roeen, G.A. et al. Hot rolling of MWCNTs reinforced Al matrix composites produced via spark plasma sintering. Adv Compos Hybrid Mater 2, 549–570 (2019). https://doi.org/10.1007/s42114-019-00095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00095-7

Keywords

Navigation