Skip to main content

Advertisement

Log in

Ink-based 3D printing technologies for graphene-based materials: a review

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

3D printing (3DP) including light-based 3DP and ink-based 3DP is a rapidly developing technology, which has received much attention of late. Light-based 3DP provides higher feature resolution, but the appropriate materials are limited. Ink-based 3DP is compatible with numerous types of materials, which can be prepared into printable inks and thus has more potential to find novel applications. Graphene-based materials have been extensively investigated in ink-based 3DP owing to their unique properties, such as high conductivity and superior mechanical flexibility. The objects from graphene-based materials via various ink-based 3DP have been reported in many fields, such as biomedical engineering and renewable energy. Still, some practical difficulties, such as the efficiency, cost, and the feasibility of mass production, have restricted it from widespread adoption by most industries. Therefore, to deal with challenges and provide new ideas for related research work, it is critical and essential to understand the ink-based 3DP using graphene-based materials. Here, we review the recent advances of ink-based 3DP of graphene-based materials. We introduce the basic properties and preparation methods of graphene, some promising ink-based 3DP, such as inkjet printing technology, direct-write assembly, and fused deposition modeling and their characteristics. The formation methodology of graphene-based materials, the performance of the as-printed architecture, and their potential applications are emphasized. We also discuss the challenges, research directions, and future trends of ink-based 3D printed graphene-based materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent, No. 4575330

  2. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45:2740–2755

    Google Scholar 

  3. MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353:aaf2093

    Google Scholar 

  4. Bhushan B, Caspers M (2017) An overview of additive manufacturing (3D printing) for microfabrication. Microsyst Technol 23:1117–1124

    Google Scholar 

  5. Zhang F, Wei M, Viswanathan VV, Swart B, Shao Y, Wu G et al (2017) 3D printing technologies for electrochemical energy storage. Nano Energy 40:418–431

    Google Scholar 

  6. Wei M, Zhang F, Wang W, Alexandridis P, Zhou C, Wu G (2017) 3D direct writing fabrication of electrodes for electrochemical storage devices. J Power Sources 354:134–147

    Google Scholar 

  7. Secor EB, Ahn BY, Gao TZ, Lewis JA, Hersam MC (2015) Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv Mater 27:6683–6688

    Google Scholar 

  8. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26:5930–5935

    Google Scholar 

  9. Hardin JO, Ober TJ, Valentine AD, Lewis JA (2015) Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv Mater 27:3279–3284

    Google Scholar 

  10. Sayyar S, Gambhir S, Chung J, Officer DL, Wallace GG (2017) 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale 9:2038–2050

    Google Scholar 

  11. Appleyard D (2015) Powering up on powder technology. Met Powder Rep 70:285–289

    Google Scholar 

  12. Farahani RD, Dubé M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28:5794–5821

    Google Scholar 

  13. Truby RL, Lewis JA (2016) Printing soft matter in three dimensions. Nature 540:371–378

    Google Scholar 

  14. Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A Phys 121:113–120

    Google Scholar 

  15. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D et al (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352

    Google Scholar 

  16. Xing J-F, Zheng M-L, Duan X-M (2015) Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 44:5031–5039

    Google Scholar 

  17. Zhang AP, Qu X, Soman P, Hribar KC, Lee JW, Chen S et al (2012) Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 24:4266–4270

    Google Scholar 

  18. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL et al (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Google Scholar 

  19. Lebel LL, Aissa B, Khakani MAE, Therriault D (2010) Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv Mater 22:592–596

    Google Scholar 

  20. Singh R, Singh V (2012) Experimental investigations for rapid moulding solution of plastics using polyjet printing. Mater Sci Forum 701:15–20

    Google Scholar 

  21. Carey T, Cacovich S, Divitini G, Ren J, Mansouri A, Kim JM et al (2017) Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat Commun 8:1202

    Google Scholar 

  22. Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC (2017) 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl Mater Interfaces 9:4015–4023

    Google Scholar 

  23. Desai JA, Biswas C, Kaul AB (2017) Inkjet printing of liquid-exfoliated, highly conducting graphene/poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate) nanosheets for organic electronics. J Vac Sci Technol B Nanotechnol Microelectron: Mater Process Meas Phenom 35:03D112

    Google Scholar 

  24. Dodoo-Arhin D, Howe RCT, Hu G, Zhang Y, Hiralal P, Bello A et al (2016) Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105:33–41

    Google Scholar 

  25. Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J et al (2016) Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 28:2587–2594

    Google Scholar 

  26. He H, Akbari M, Sydänheimo L, Ukkonen L, Virkki J (2017) 3D-printed graphene antennas and interconnections for textile RFID tags: fabrication and reliability towards humidity. Int J Antenn Propag 2017:1–5

    Google Scholar 

  27. Kim JH, Chang WS, Kim D, Yang JR, Han JT, Lee GW et al (2015) 3D printing of reduced graphene oxide nanowires. Adv Mater 27:157–161

    Google Scholar 

  28. Li J, Sollami Delekta S, Zhang P, Yang S, Lohe MR, Zhuang X et al (2017) Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano 11:8249–8256

    Google Scholar 

  29. Lin D, Jin S, Zhang F, Wang C, Wang Y, Zhou C et al (2015) 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26:434003

    Google Scholar 

  30. Vernardou D, Vasilopoulos KC, Kenanakis G (2017) 3D printed graphene-based electrodes with high electrochemical performance. Appl Phys A 123:623

    Google Scholar 

  31. Wang M, Zhang S, Song Y, Dong J, Wei H, Xie H et al (2016) Fabrication of light, flexible and multifunctional graphene nanoribbon fibers via a 3D solution printing method. Nanotechnology 27:465702

    Google Scholar 

  32. Yao Y, Fu KK, Yan C, Dai J, Chen Y, Wang Y et al (2016) Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 10:5272–5279

    Google Scholar 

  33. Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J et al (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86

    Google Scholar 

  34. Zhang Q, Zhang F, Medarametla SP, Li H, Zhou C, Lin D (2016) 3D printing of graphene aerogels. Small 12:1702–1708

    Google Scholar 

  35. Zhou X, Nowicki M, Cui H, Zhu W, Fang X, Miao S et al (2017) 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon 116:615–624

    Google Scholar 

  36. Xu Y, Hennig I, Freyberg D, James Strudwick A, Georg Schwab M, Weitz T et al (2014) Inkjet-printed energy storage device using graphene/polyaniline inks. J Power Sources 248:483–488

    Google Scholar 

  37. Wang D, Zha W, Feng L, Ma Q, Liu X, Yang N et al (2016) Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes. J Micromech Microeng 26:045010

    Google Scholar 

  38. Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S et al (2014) Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6:16312–16319

    Google Scholar 

  39. Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Google Scholar 

  40. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Google Scholar 

  41. Zhu D, Ren Y, Liao G, Jiang S, Liu F, Guo J et al (2017) Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. J Appl Polym Sci 134:45332

    Google Scholar 

  42. Zhu C, Han TY-J, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM et al (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962

    Google Scholar 

  43. Jakus AE, Shah RN (2017) Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A 105:274–283

    Google Scholar 

  44. Singh R, Sandhu G, Penna R, Farina I (2017) Investigations for thermal and electrical conductivity of ABS-graphene blended prototypes. Materials 10:881

    Google Scholar 

  45. Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29:1603486

    Google Scholar 

  46. García-Tuñon E, Barg S, Franco J, Bell R, Eslava S, D'Elia E et al (2015) Printing in three dimensions with graphene. Adv Mater 27:1688–1693

    Google Scholar 

  47. Rocha VG, García-Tuñón E, Botas C, Markoulidis F, Feilden E, D’Elia E et al (2017) Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. ACS Appl Mater Interfaces 9:37136–37145

    Google Scholar 

  48. Zhu C, Liu T, Qian F, Han TY-J, Duoss EB, Kuntz JD et al (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16:3448–3456

    Google Scholar 

  49. Foster CW, Down MP, Zhang Y, Ji X, Rowley-Neale SJ, Smith GC et al (2017) 3D printed graphene based energy storage devices. Sci Rep 7:42233

    Google Scholar 

  50. Yu WW, Zhang J, Wu JR, Wang XZ, Deng YH (2017) Incorporation of graphitic nano-filler and poly(lactic acid) in fused deposition modeling. J Appl Polym Sci 134:44703

  51. He Q, Das SR, Garland NT, Jing D, Hondred JA, Cargill AA et al (2017) Enabling inkjet printed graphene for ion selective electrodes with postprint thermal annealing. ACS Appl Mater Interfaces 9:12719–12727

    Google Scholar 

  52. Manapat JZ, Mangadlao JD, Tiu BDB, Tritchler GC, Advincula RC (2017) High-strength stereolithographic 3D printed nanocomposites: graphene oxide metastability. ACS Appl Mater Interfaces 9:10085–10093

    Google Scholar 

  53. Azhari A, Marzbanrad E, Yilman D, Toyserkani E, Pope MA (2017) Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon 119:257–266

    Google Scholar 

  54. Zhang Q, Zhang F, Xu X, Zhou C, Lin D (2018) Three-dimensional printing hollow polymer template-mediated graphene lattices with tailorable architectures and multifunctional properties. ACS Nano 12:1096–1106

    Google Scholar 

  55. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Google Scholar 

  56. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors 17:2161

    Google Scholar 

  57. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Google Scholar 

  58. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA et al (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11:2396–2399

    Google Scholar 

  59. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Google Scholar 

  60. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Google Scholar 

  61. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462

    Google Scholar 

  62. Moser J, Barreiro A, Bachtold A (2007) Current-induced cleaning of graphene. Appl Phys Lett 91:163513

    Google Scholar 

  63. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308

    Google Scholar 

  64. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Google Scholar 

  65. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Google Scholar 

  66. Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E et al (2012) Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 50:57–65

    Google Scholar 

  67. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Google Scholar 

  68. Du W, Jiang X, Zhu L (2013) From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J Mater Chem A 1:10592–10606

    Google Scholar 

  69. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525

    Google Scholar 

  70. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q et al (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Google Scholar 

  71. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Google Scholar 

  72. Sun X, Li B, Lu M (2017) A covalent modification for graphene by adamantane groups through two-step chlorination-Grignard reactions. J Solid State Chem 251:194–197

    Google Scholar 

  73. Qi X, Pu KY, Li H, Zhou X, Wu S, Fan QL et al (2010) Amphiphilic graphene composites. Angew Chem Int Ed 49:9426–9429

    Google Scholar 

  74. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Google Scholar 

  75. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Google Scholar 

  76. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Google Scholar 

  77. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G et al (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493

    Google Scholar 

  78. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE et al (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49:2154–2157

    Google Scholar 

  79. Liu J, Fu S, Yuan B, Li Y, Deng Z (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281

    Google Scholar 

  80. Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC (2013) Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem 6:151–158

    Google Scholar 

  81. Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113:7985–7989

    Google Scholar 

  82. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Google Scholar 

  83. An BW, Kim K, Kim M, Kim SY, Hur SH, Park JU (2015) Direct printing of reduced graphene oxide on planar or highly curved surfaces with high resolutions using electrohydrodynamics. Small 11:2263–2268

    Google Scholar 

  84. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569

    Google Scholar 

  85. Fu Y-X, He Z-X, Mo D-C, Lu S-S (2014) Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int J Therm Sci 86:276–283

    Google Scholar 

  86. Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermalconductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238

    Google Scholar 

  87. Zhang J-X, Liang Y-X, Wang X, Zhou H-J, Li S-Y, Zhang J et al (2018) Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv Compos Hybrid Mater 1:300–309

    Google Scholar 

  88. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Google Scholar 

  89. Satti A, Larpent P, Gun’ko Y (2010) Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking. Carbon 48:3376–3381

    Google Scholar 

  90. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20:9635–9643

    Google Scholar 

  91. Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254

    Google Scholar 

  92. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282

    Google Scholar 

  93. Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298

    Google Scholar 

  94. Syurik YV, Ghislandi MG, Tkalya EE, Paterson G, McGrouther D, Ageev OA et al (2012) Graphene network organisation in conductive polymer composites. Macromol Chem Phys 213:1251–1258

    Google Scholar 

  95. Wu H, Huang X, Qian L (2018) Recent progress on the metacompoistes with carbonaceous fillers. Eng Sci 2:17–25

    Google Scholar 

  96. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC et al (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846

    Google Scholar 

  97. Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L et al (2010) Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim Acta 55:6973–6978

    Google Scholar 

  98. Ahmad J, Majid K (2018) In-situ synthesis of visible-light responsive Ag2O/graphene oxide nanocomposites and effect of graphene oxide content on its photocatalytic activity. Adv Compos Hybrid Mater 1:374–388

    Google Scholar 

  99. Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017

    Google Scholar 

  100. Bich Ha N, Van Hieu N (2016) Promising applications of graphene and graphene-based nanostructures. Adv Nat Sci Nanosci Nanotechnol 7:023002

    Google Scholar 

  101. Wang M, Duan X, Xu Y, Duan X (2016) Functional three-dimensional graphene/polymer composites. ACS Nano 10:7231–7247

    Google Scholar 

  102. Onses MS, Sutanto E, Ferreira PM, Alleyne AG, Rogers JA (2015) Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11:4237–4266

    Google Scholar 

  103. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing—process and its applications. Adv Mater 22:673–685

    Google Scholar 

  104. Basiricò L, Cosseddu P, Scidà A, Fraboni B, Malliaras GG, Bonfiglio A (2012) Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors. Org Electron 13:244–248

    Google Scholar 

  105. Castrejon-Pita JR, Baxter WRS, Morgan J, Temple S, Martin GD, Hutchings IM (2013) Future, opportunities and challenges of inkjet technologies. Atomization Sprays 23:541–565

    Google Scholar 

  106. Jung S, Sou A, Banger K, Ko DH, Chow PCY, McNeill CR et al (2014) All-inkjet-printed, all-air-processed solar cells. Adv Energy Mater 4:1400432

    Google Scholar 

  107. Medina-Sánchez M, Martínez-Domingo C, Ramon E, Merkoçi A (2014) An inkjet-printed field-effect transistor for label-free biosensing. Adv Funct Mater 24:6291–6302

    Google Scholar 

  108. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–713

    Google Scholar 

  109. Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS et al (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006

    Google Scholar 

  110. Gao M, Li L, Song Y (2017) Inkjet printing wearable electronic devices. J Mater Chem C 5:2971–2993

    Google Scholar 

  111. Salim A, Lim S (2017) Review of recent inkjet-printed capacitive tactile sensors. Sensors 17:2593

    Google Scholar 

  112. Peng X, Yuan J, Shen S, Gao M, Chesman ASR, Yin H et al (2017) Perovskite and organic solar cells fabricated by inkjet printing: progress and prospects. Adv Funct Mater 27:1703704

    Google Scholar 

  113. Zhan Z, An J, Wei Y, Tran VT, Du H (2017) Inkjet-printed optoelectronics. Nanoscale 9:965–993

    Google Scholar 

  114. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754

    Google Scholar 

  115. Derby B, Reis N (2011) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28:815–818

    Google Scholar 

  116. Li J, Ye F, Vaziri S, Muhammed M, Lemme MC, Östling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992

    Google Scholar 

  117. Jiang X, Zhao XL, Jing LI, Lin SY, Zhu HW (2017) Recent developments in graphene conductive ink: preparation, printing technology and application. Chin Sci Bull 62:3217–3235 (in Chinese)

    Google Scholar 

  118. Huang L, Huang Y, Liang J, Wan X, Chen Y (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4:675–684

    Google Scholar 

  119. Le LT, Ervin MH, Qiu H, Fuchs BE, Lee WY (2011) Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem Commun 13:355–358

    Google Scholar 

  120. Nikolaou I, Hallil H, Conédéra V, Plano B, Tamarin O, Lachaud JL et al (2017) Electro-mechanical properties of inkjet-printed graphene oxide nanosheets. Phys Status Solidi A 214:1600492

    Google Scholar 

  121. Vuorinen T, Niittynen J, Kankkunen T, Kraft TM, Mäntysalo M (2016) Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci Rep 6:35289

    Google Scholar 

  122. Choi K-H, Yoo J, Lee CK, Lee S-Y (2016) All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 9:2812–2821

    Google Scholar 

  123. Qian W, Hao R, Hou Y, Tian Y, Shen C, Gao H et al (2009) Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res 2:706–712

    Google Scholar 

  124. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Google Scholar 

  125. Antonova IV (2017) 2D printing technologies using graphene-based materials. Physics-Uspekhi 60:204–218

    Google Scholar 

  126. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891

    Google Scholar 

  127. Parvez K, Wu Z-S, Li R, Liu X, Graf R, Feng X et al (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091

    Google Scholar 

  128. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Google Scholar 

  129. Arapov K, Abbel R, de With G, Friedrich H (2014) Inkjet printing of graphene. Faraday Discuss 173:323–336

    Google Scholar 

  130. Lim S, Kang B, Kwak D, Lee WH, Lim JA, Cho K (2012) Inkjet-printed reduced graphene oxide/poly(vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors. J Phys Chem C 116:7520–7525

    Google Scholar 

  131. Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z (2010) Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim Acta 55:4170–4173

    Google Scholar 

  132. Sinar D, Knopf GK, Nikumb S, Andrushchenko A (2016) Printed optically transparent graphene cellulose electrodes. In: Proc. SPIE 9745, Organic Photonic Materials and Devices XVIII, 974515. https://doi.org/10.1117/12.2208790

  133. Wei D, Li H, Han D, Zhang Q, Niu L, Yang H et al (2011) Properties of graphene inks stabilized by different functional groups. Nanotechnology 22:245702

    Google Scholar 

  134. Choo DC, Kim TW (2015) Conducting transparent thin films based on silver nanowires and graphene-oxide flakes. J Electrochem Soc 162:H419–H421

    Google Scholar 

  135. Jabari E, Toyserkani E (2016) Aerosol-jet printing of highly flexible and conductive graphene/silver patterns. Mater Lett 174:40–43

    Google Scholar 

  136. Zhang X, Wang A, Ke R, Zhang S, Niu H, Mao C et al (2015) Electrochemical synthesis and photoelectrochemical properties of a novel RGO/AgNDs composite. RSC Adv 5:32994–33000

    Google Scholar 

  137. Liu Z, Parvez K, Li R, Dong R, Feng X, Müllen K (2014) Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv Mater 27:669–675

    Google Scholar 

  138. Yuan Y, Peng B, Chi H, Li C, Liu R, Liu X (2016) Layer-by-layer inkjet printing SPS:PEDOT NP/RGO composite film for flexible humidity sensors. RSC Adv 6:113298–113306

    Google Scholar 

  139. Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Adv Mater 26:6950–6958

    Google Scholar 

  140. Raje PV, Murmu NC (2014) A review on electrohydrodynamic-inkjet printing technology. International Journal of Emerging Technology and Advanced Engineering 4:174–183

    Google Scholar 

  141. Park J-U, Hardy M, Kang SJ, Barton K, Adair K, Mukhopadhyay DK et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789

    Google Scholar 

  142. Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A Math Phys Sci 280:383–397

    Google Scholar 

  143. Jayasinghe SN, Edirisinghe MJ (2004) Electric-field driven jetting from dielectric liquids. Appl Phys Lett 85:4243–4245

    Google Scholar 

  144. Lan HB, Dichen LI, Bingheng LU (2015) Micro- and nanoscale 3D printing. Sci Sinica 45:919–940 (in Chinese)

    Google Scholar 

  145. Awais MN, Kim HC, Doh YH, Choi KH (2013) ZrO2 flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 536:308–312

    Google Scholar 

  146. Lee S, Kim J, Choi J, Park H, Ha J, Kim Y et al (2012) Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors. Appl Phys Lett 100:102108

    Google Scholar 

  147. Park H-G, Byun S-U, Jeong H-C, Lee J-W, Seo D-S (2013) Photoreactive spacer prepared using electrohydrodynamic printing for application in a liquid crystal device. ECS Solid State Lett 2:R52–R54

    Google Scholar 

  148. Fariza Dian P, Hadi Teguh Y, Vu Dat N, Doyoung B (2013) Ag dot morphologies printed using electrohydrodynamic (EHD) jet printing based on a drop-on-demand (DOD) operation. J Micromech Microeng 23:095028

    Google Scholar 

  149. George S, Chaudhery V, Lu M, Takagi M, Amro N, Pokhriyal A et al (2013) Sensitive detection of protein and miRNA cancer biomarkers using silicon-based photonic crystals and a resonance coupling laser scanning platform. Lab Chip 13:4053–4064

    Google Scholar 

  150. Song CH, Back SY, Yu SI, Lee HJ, Kim BS, Yang NY et al (2012) Direct-patterning of porphyrin dot arrays and lines using electrohydrodynamic jet printing. J Nanosci Nanotechnol 12:475–480

    Google Scholar 

  151. Park J-U, Lee JH, Paik U, Lu Y, Rogers JA (2008) Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett 8:4210–4216

    Google Scholar 

  152. Wei C, Dong J (2014) Hybrid hierarchical fabrication of three-dimensional scaffolds. J Manuf Process 16:257–263

    Google Scholar 

  153. Tan Y, Sutanto E, Alleyne AG, Cunningham BT (2014) Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning. J Biophotonics 7:266–275

    Google Scholar 

  154. Yudistira HT, Tenggara AP, Nguyen VD, Kim TT, Prasetyo FD, C-g C et al (2013) Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing. Appl Phys Lett 103:211106

    Google Scholar 

  155. Yin Z, Huang Y, Bu N, Wang X, Xiong Y (2010) Inkjet printing for flexible electronics: materials, processes and equipments. Chin Sci Bull 55:3383–3407 (in Chinese)

    Google Scholar 

  156. Zhang Z (2015) Jetting mechanism, simulation and experimentation of micro scale 3D printing based on EHD. Dissertation, Qingdao Technological University

  157. Ali S, Hassan A, Hassan G, Bae J, Lee CH (2016) All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon 105:23–32

    Google Scholar 

  158. Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14:1279–1283

    Google Scholar 

  159. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA (2008) Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 18:1883–1889

    Google Scholar 

  160. Herschel WH, Bulkley R (1926) Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Z 39:291–300

    Google Scholar 

  161. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204

    Google Scholar 

  162. Guo JJ, Lewis JA (1999) Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions. J Am Ceram Soc 82:2345–2358

    Google Scholar 

  163. Naficy S, Jalili R, Aboutalebi SH, Gorkin Iii RA, Konstantinov K, Innis PC et al (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1:326–331

    Google Scholar 

  164. Huang C-T, Kumar Shrestha L, Ariga K, Hsu S-h (2017) A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. J Mater Chem B 5:8854–8864

    Google Scholar 

  165. Nathan-Walleser T, Lazar IM, Fabritius M, Tölle FJ, Xia Q, Bruchmann B et al (2014) 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors. Adv Funct Mater 24:4706–4716

    Google Scholar 

  166. Pierin G, Grotta C, Colombo P, Mattevi C (2016) Direct ink writing of micrometric SiOC ceramic structures using a preceramic polymer. J Eur Ceram Soc 36:1589–1594

    Google Scholar 

  167. Sun G, An J, Chua CK, Pang H, Zhang J, Chen P (2015) Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochem Commun 51:33–36

    Google Scholar 

  168. Zhong J, Zhou G-X, He P-G, Yang Z-H, Jia D-C (2017) 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon 117:421–426

    Google Scholar 

  169. García-Tuñón E, Feilden E, Zheng H, D’Elia E, Leong A, Saiz E (2017) Graphene oxide: an all-in-one processing additive for 3D printing. ACS Appl Mater Interfaces 9:32977–32989

    Google Scholar 

  170. Li H, Liu S, Lin L (2016) Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. Int J Bioprinting 2:54–66

    Google Scholar 

  171. Liu Y, Zhang B, Xu Q, Hou Y, Seyedin S, Qin S et al (2018) Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv Funct Mater 28:1706592

  172. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated li-ion microbattery architectures. Adv Mater 25:4539–4543

    Google Scholar 

  173. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Google Scholar 

  174. Lacey SD, Kirsch DJ, Li Y, Morgenstern JT, Zarket BC, Yao Y et al (2018) Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv Mater 30:1705651

    Google Scholar 

  175. Zu S-Z, Han B-H (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113:13651–13657

    Google Scholar 

  176. Yan S, He P, Jia D, Yang Z, Duan X, Wang S et al (2015) In situ fabrication and characterization of graphene/geopolymer composites. Ceram Int 41:11242–11250

    Google Scholar 

  177. Guo SZ, Gosselin F, Guerin N, Lanouette AM, Heuzey MC, Therriault D (2013) Solvent-cast three-dimensional printing of multifunctional microsystems. Small 9:4118–4122

    Google Scholar 

  178. Farahani RD, Chizari K, Therriault D (2014) Three-dimensional printing of freeform helical microstructures: a review. Nanoscale 6:10470–10485

    Google Scholar 

  179. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos A: Appl Sci Manuf 76:110–114

    Google Scholar 

  180. Guo S-Z, Yang X, Heuzey M-C, Therriault D (2015) 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7:6451–6456

    Google Scholar 

  181. Guo S-Z, Heuzey M-C, Therriault D (2014) Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures. Langmuir 30:1142–1150

    Google Scholar 

  182. Chizari K, Arjmand M, Liu Z, Sundararaj U, Therriault D (2017) Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater Today Commun 11:112–118

    Google Scholar 

  183. Chizari K, Daoud MA, Ravindran AR, Therriault D (2016) 3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors. Small 12:6076–6082

    Google Scholar 

  184. Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9:4636–4648

    Google Scholar 

  185. Huang K, Yang J, Dong S, Feng Q, Zhang X, Ding Y et al (2018) Anisotropy of graphene scaffolds assembled by three-dimensional printing. Carbon 130:1–10

    Google Scholar 

  186. de Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155

    Google Scholar 

  187. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405

    Google Scholar 

  188. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B 110:442–458

    Google Scholar 

  189. Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Compos A: Appl Sci Manuf 85:181–191

    Google Scholar 

  190. Prashantha K, Roger F (2017) Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling. J Macromol Sci A 54:24–29

    Google Scholar 

  191. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J et al (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80–83

    Google Scholar 

  192. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z et al (2015) 3D printable graphene composite. Sci Rep 5:11181

    Google Scholar 

  193. Zhao X, Xu Z, Zheng B, Gao C (2013) Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide. Sci Rep 3:3164

    Google Scholar 

  194. Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224

    Google Scholar 

  195. Garcia-Alegria E, Iliut M, Stefanska M, Silva C, Heeg S, Kimber SJ et al (2016) Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci Rep 6:25917

    Google Scholar 

  196. Yang XZ, Wang YC, Tang LY, Xia H, Wang J (2008) Synthesis and characterization of amphiphilic block copolymer of polyphosphoester and poly(L-lactic acid). J Polym Sci A Polym Chem 46:6425–6434

    Google Scholar 

  197. Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B, Jhon MS et al (2011) Nanocomposite nanofibers of poly(D,L-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos A: Appl Sci Manuf 42:1978–1984

    Google Scholar 

  198. Barnett E, Angeles J, Pasini D, Sijpkes P (2009) Robot-assisted rapid prototyping for ice structures. In: 2009 IEEE International Conference on Robotics and Automation. IEEE, pp 146–151. https://doi.org/10.1109/ROBOT.2009.5152317

  199. Sui G, Leu MC (2003) Investigation of layer thickness and surface roughness in rapid freeze prototyping. J Manuf Sci Eng 125:556–563

    Google Scholar 

  200. Zhang F, Yang F, Lin D, Zhou C (2016) Parameter study of three-dimensional printing graphene oxide based on directional freezing. J Manuf Sci Eng 139:031016

    Google Scholar 

  201. Yan P, Brown E, Su Q, Li J, Wang J, Xu C et al (2017) 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson's ratio. Small 13:1701756

    Google Scholar 

  202. Yang F, Zhao G, Zhou C, Lin D (2018) Phase change materials (PCM) based cold source for selective freezing 3D printing of porous materials. Int J Adv Manuf Technol 95:2145–2155

    Google Scholar 

  203. Lin Y, Liu F, Casano G, Bhavsar R, Kinloch IA, Derby B (2016) Pristine graphene aerogels by room-temperature freeze gelation. Adv Mater 28:7993–8000

    Google Scholar 

  204. Lin Y, Jin J, Kusmartsevab O, Song M (2013) Preparation of pristine graphene sheets and large-area/ultrathin graphene films for high conducting and transparent applications. J Phys Chem C 117:17237–17244

    Google Scholar 

  205. Araki K, Halloran JW (2004) New freeze-casting technique for ceramics with sublimable vehicles. J Am Ceram Soc 87:1859–1863

    Google Scholar 

  206. Araki K, Halloran John W (2005) Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J Am Ceram Soc 88:1108–1114

    Google Scholar 

  207. Das SR, Nian Q, Cargill AA, Hondred JA, Ding S, Saei M et al (2016) 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale 8:15870–15879

    Google Scholar 

  208. Low Z-X, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA (2017) Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 523:596–613

    Google Scholar 

  209. Cheng XQ, Wang ZX, Jiang X, Li T, Lau CH, Guo Z et al (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283

    Google Scholar 

  210. Manzanares Palenzuela CL, Pumera M (2018) (Bio)analytical chemistry enabled by 3D printing: sensors and biosensors. TrAC Trends Anal Chem 103:110–118

    Google Scholar 

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (51573035 and 51790502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyan Liu or Zhanhu Guo.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Y., Fan, Z. et al. Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2, 1–33 (2019). https://doi.org/10.1007/s42114-018-0067-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0067-9

Keywords

Navigation