Skip to main content
Log in

Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A desirable membrane with high separation performance, excellent antifouling properties, and chemical stability is important to the advance of forward osmosis (FO) technology in the wastewater treatment and desalination processes. In this work, three different tertiary amines, i.e., tri-ethylamine (TEA), tris(2-aminoethyl) amine (TAEA), and hexamethylenetetramine (HMTA), are employed as catalysts to accelerate the interfacial polymerization (IP) reaction for constructing the PA layer with optimized properties and performance of the resulting membranes. For the first time, the effect of different tertiary amines on the microstructure, morphology, and surface properties of formed PA layers, as well as the separation performance, fouling, and chemical resistance of the resulting TFC membranes, are studied systematically with various characterization techniques. As compared with the control membrane, modified membranes exhibit obviously improved separation performance and greater potential in the desalination process. Furthermore, modified membranes also exhibit improved fouling resistance and chemical stability. Therefore, the tertiary amine modification of TFC membranes may shed a new light for their future applications in harsh conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Xu YC, Cheng XQ, Long J, Shao L (2016) A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations. J Membr Sci 497:77–89. https://doi.org/10.1016/j.memsci.2015.09.029

    Article  Google Scholar 

  2. Lu TD, Chen BZ, Wang J, Jia TZ, Cao XL, Wang Y, Xing W, Lau CH, Sun SP (2018) Electrospun nanofiber substrates that enhance polar solvent separation from organic compounds in thin-film composites. J Mater Chem A 6:15047–15056. https://doi.org/10.1039/c8ta04504f

    Article  Google Scholar 

  3. Sukitpaneenit P, Chung T-S (2012) High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environ Sci Technol 46(13):7358–7365. https://doi.org/10.1021/es301559z

    Article  Google Scholar 

  4. Wang Y, Xu T (2015) Anchoring hydrophilic polymer in substrate: an easy approach for improving the performance of TFC FO membrane. J Membr Sci 476:330–339. https://doi.org/10.1016/j.memsci.2014.11.025

    Article  Google Scholar 

  5. Wang Y, Ou R, Wang H, Xu T (2015) Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. J Membr Sci 475:281–289. https://doi.org/10.1016/j.memsci.2014.10.028

    Google Scholar 

  6. Xia QC, Wang J, Wang X, Chen BZ, Guo JL, Jia TZ, Sun SP (2017) A hydrophilicity gradient control mechanism for fabricating delamination-free dual-layer membranes. J Membr Sci 539:392–402. https://doi.org/10.1016/j.memsci.2017.06.021

  7. Shen L, Hung W-s, Zuo J, Zhang X, Lai J-Y, Wang Y (2019) High-performance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization. J Membr Sci 570–571:112–119. https://doi.org/10.1016/j.memsci.2018.10.014

  8. Shen L, Wang Y (2018) Efficient surface modification of thin-film composite membranes with self-catalyzed tris(2-aminoethyl) amine for forward osmosis separation. Chem Eng Sci 178:82–92. https://doi.org/10.1016/j.ces.2017.12.026

    Article  Google Scholar 

  9. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471. https://doi.org/10.1021/cr800208y

    Article  Google Scholar 

  10. She Q, Wang R, Fane AG, Tang CY (2016) Membrane fouling in osmotically driven membrane processes: a review. J Membr Sci 499:201–233. https://doi.org/10.1016/j.memsci.2015.10.040

    Article  Google Scholar 

  11. Lu X, Romero-Vargas Castrillon S, Shaffer DL, Ma J, Elimelech M (2013) In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance. Environ Sci Technol 47(21):12219–12228. https://doi.org/10.1021/es403179m

    Article  Google Scholar 

  12. Xie M, Gray SR (2016) Gypsum scaling in forward osmosis: role of membrane surface chemistry. J Membr Sci 513:250–259. https://doi.org/10.1016/j.memsci.2016.04.022

    Article  Google Scholar 

  13. Liu M, Chen Q, Wang L, Yu S, Gao C (2015) Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination 367:11–20. https://doi.org/10.1016/j.desal.2015.03.028

    Article  Google Scholar 

  14. Shen L, Zhang X, Zuo J, Wang Y (2017) Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. J Membr Sci 534:46–58. https://doi.org/10.1016/j.memsci.2017.04.008

    Article  Google Scholar 

  15. Xu G-R, Wang J-N, Li C-J (2013) Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 328:83–100. https://doi.org/10.1016/j.desal.2013.08.022

    Article  Google Scholar 

  16. Do VT, Tang CY, Reinhard M, Leckie JO (2012) Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ Sci Technol 46(2):852–859. https://doi.org/10.1021/es203090y

    Article  Google Scholar 

  17. Cheng XQ, Liu Y, Guo Z, Shao L (2015) Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. J Membr Sci 493:156–166. https://doi.org/10.1016/j.memsci.2015.06.048

    Article  Google Scholar 

  18. Cheng XQ, Shao L, Lau CH (2015) High flux polyethylene glycol based nanofiltration membranes for water environmental remediation. J Membr Sci 476:95–104. https://doi.org/10.1016/j.memsci.2014.11.020

    Article  Google Scholar 

  19. Azari S, Zou L (2012) Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. J Membr Sci 401:68–75. https://doi.org/10.1016/j.memsci.2012.01.041

    Article  Google Scholar 

  20. Tiraferri A, Kang Y, Giannelis EP, Elimelech M (2012) Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl Mater Interfaces 4(9):5044–5053. https://doi.org/10.1021/am301532g

    Article  Google Scholar 

  21. Cui Y, Liu X-Y, Chung T-S (2014) Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes. Chem Eng J 242:195–203. https://doi.org/10.1016/j.cej.2013.12.078

    Article  Google Scholar 

  22. Sun S-P, Chung T-S, Lu K-J, Chan S-Y (2014) Enhancement of flux and solvent stability of Matrimid®thin-film composite membranes for organic solvent nanofiltration. AICHE J 60(10):3623–3633. https://doi.org/10.1002/aic.14558

    Article  Google Scholar 

  23. Ong RC, Chung T-S, de Wit JS, Helmer BJ (2015) Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. J Membr Sci 473:63–71. https://doi.org/10.1016/j.memsci.2014.08.046

    Article  Google Scholar 

  24. Zhang S, Fu F, Chung T-S (2013) Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power. Chem Eng Sci 87:40–50. https://doi.org/10.1016/j.ces.2012.09.014

    Article  Google Scholar 

  25. Han G, Zhang S, Li X, Chung T-S (2013) High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation. J Membr Sci 440:108–121. https://doi.org/10.1016/j.memsci.2013.04.001

    Article  Google Scholar 

  26. Wang H, Li L, Zhang X, Zhang S (2010) Polyamide thin-film composite membranes prepared from a novel triamine 3,5-diamino-N-(4-aminophenyl)-benzamide monomer and m-phenylenediamine. J Membr Sci 353(1–2):78–84. https://doi.org/10.1016/j.memsci.2010.02.033

    Article  Google Scholar 

  27. Hong SP, Kim IC, Tak T, Kwon YN (2013) Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination 309(3):18–26. https://doi.org/10.1016/j.desal.2012.09.025

    Article  Google Scholar 

  28. Shen L, Xiong S, Wang Y (2016) Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chem Eng Sci 143:194–205. https://doi.org/10.1016/j.ces.2015.12.029

    Article  Google Scholar 

  29. Ali MEA, Hassan FM, Feng X (2016) Improving the performance of TFC membranes via chelation and surface reaction: applications in water desalination. J Mater Chem A 4(17):6620–6629. https://doi.org/10.1039/c6ta01460g

    Article  Google Scholar 

  30. Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci 450:249–256. https://doi.org/10.1016/j.memsci.2013.09.014

    Article  Google Scholar 

  31. Ma N, Wei J, Liao R, Tang CY (2012) Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. J Membr Sci 405-406:149–157. https://doi.org/10.1016/j.memsci.2012.03.002

    Article  Google Scholar 

  32. Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston AG (2013) High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J Am Chem Soc 135(40):15201–15208. https://doi.org/10.1021/ja407665w

    Article  Google Scholar 

  33. Jadav GL, Singh PS (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Membr Sci 328(1–2):257–267. https://doi.org/10.1016/j.memsci.2008.12.014

    Article  Google Scholar 

  34. Li X, Loh CH, Wang R, Widjajanti W, Torres J (2017) Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. J Membr Sci 525:257–268. https://doi.org/10.1016/j.memsci.2016.10.051

    Article  Google Scholar 

  35. Kong C, Shintani T, Kamada T, Freger V, Tsuru T (2011) Co-solvent-mediated synthesis of thin polyamide membranes. J Membr Sci 384(1–2):10–16. https://doi.org/10.1016/j.memsci.2011.08.055

    Article  Google Scholar 

  36. Xiang J, Xie Z, Hoang M, Ng D, Zhang K (2014) Effect of ammonium salts on the properties of poly (piperazineamide) thin film composite nanofiltration membrane. J Membr Sci 465:34–40. https://doi.org/10.1016/j.memsci.2014.03.074

    Article  Google Scholar 

  37. Mansourpanah Y, Madaeni SS, Rahimpour A (2009) Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance. J Membr Sci 343(1–2):219–228. https://doi.org/10.1016/j.memsci.2009.07.033

    Article  Google Scholar 

  38. Ghosh AK, Jeong B-H, Huang X, Hoek EMV (2008) Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J Membr Sci 311(1–2):34–45. https://doi.org/10.1016/j.memsci.2007.11.038

    Article  Google Scholar 

  39. Gu JE, Lee S, Stafford CM, Lee JS, Choi W, Kim BY, Baek KY, Chan EP, Chung JY, Bang J, Lee JH (2013) Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv Mater 25(34):4778–4782. https://doi.org/10.1002/adma.201302030

    Article  Google Scholar 

  40. An Q, Hung W-S, Lo S-C, Li Y-H, De Guzman M, Hu C-C, Lee K-R, Jean Y-C, Lai J-Y (2012) Comparison between free volume characteristics of composite membranes fabricated through static and dynamic interfacial polymerization processes. Macromolecules 45(8):3428–3435. https://doi.org/10.1021/ma3001324

    Article  Google Scholar 

  41. Shen L, Zuo J, Wang Y (2017) Tris(2-aminoethyl) amine in-situ modified thin-film composite membranes for forward osmosis applications. J Membr Sci 537:186–201. https://doi.org/10.1016/j.memsci.2017.05.035

    Article  Google Scholar 

  42. Shen L, Wang F, Tian L, Zhang X, Ding C, Wang Y High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids. J Membr Sci. 563:284–297. https://doi.org/10.1016/j.memsci.2018.05.071

  43. Wang Y, Li X, Cheng C, He Y, Pan J, Xu T (2016) Second interfacial polymerization on polyamide surface using aliphatic diamine with improved performance of TFC FO membranes. J Membr Sci 498:30–38. https://doi.org/10.1016/j.memsci.2015.09.067

    Article  Google Scholar 

  44. Akin O, Temelli F (2011) Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM. Desalination 278(1–3):387–396. https://doi.org/10.1016/j.desal.2011.05.053

    Article  Google Scholar 

  45. Klaysom C, Hermans S, Gahlaut A, Van Craenenbroeck S, Vankelecom IFJ (2013) Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: film optimization, characterization and performance evaluation. J Membr Sci 445:25–33. https://doi.org/10.1016/j.memsci.2013.05.037

    Article  Google Scholar 

  46. Li X, Wang KY, Helmer B, Chung T-S (2012) Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Ind Eng Chem Res 51(30):10039–10050. https://doi.org/10.1021/ie2027052

    Article  Google Scholar 

  47. Saha NK, Joshi SV (2009) Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type. J Membr Sci 342(1):60–69. https://doi.org/10.1016/j.memsci.2009.06.025

    Article  Google Scholar 

  48. Buch PR, Mohan DJ, Reddy AVR (2008) Preparation, characterization and chlorine stability of aromatic–cycloaliphatic polyamide thin film composite membranes. J Membr Sci 309(1):36–44. https://doi.org/10.1016/j.memsci.2007.10.004

    Article  Google Scholar 

  49. Chen H, Hung W, Lo C, Huang S, Cheng M, Liu G, Lee K, Lai J, Sun Y, Chienchieh H (2007) Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization. Macromolecules 40(21):7542–7557

    Article  Google Scholar 

  50. Tang CY, Kwon Y-N, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. Desalination 242(1):168–182. https://doi.org/10.1016/j.desal.2008.04.004

    Article  Google Scholar 

  51. Wu D, Huang Y, Yu S, Lawless D, Feng X (2014) Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. J Membr Sci 472:141–153. https://doi.org/10.1016/j.memsci.2014.08.055

    Article  Google Scholar 

  52. Yan F, Chen H, Lü Y, Lü Z, Yu S, Liu M, Gao C (2016) Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J Membr Sci 513:108–116. https://doi.org/10.1016/j.memsci.2016.04.049

    Article  Google Scholar 

  53. Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 188(1):115–128. https://doi.org/10.1016/S0376-7388(01)00376-3

    Article  Google Scholar 

  54. Ramon GZ, Hoek EMV (2013) Transport through composite membranes, part 2: impacts of roughness on permeability and fouling. J Membr Sci 425–426:141–148. https://doi.org/10.1016/j.memsci.2012.08.004

    Article  Google Scholar 

  55. Mi B, Elimelech M (2010) Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. Environ Sci Technol 44(6):2022–2028. https://doi.org/10.1021/es903623r

    Article  Google Scholar 

  56. Shirazi S, Lin C-J, Chen D (2010) Inorganic fouling of pressure-driven membrane processes—a critical review. Desalination 250(1):236–248. https://doi.org/10.1016/j.desal.2009.02.056

    Article  Google Scholar 

  57. Wang Y-N, Järvelä E, Wei J, Zhang M, Kyllönen H, Wang R, Tang CY (2016) Gypsum scaling and membrane integrity of osmotically driven membranes: the effect of membrane materials and operating conditions. Desalination 377:1–10. https://doi.org/10.1016/j.desal.2015.08.024

    Article  Google Scholar 

  58. Sahebi S, Phuntsho S, Woo YC, Park MJ, Tijing LD, Hong S, Shon HK (2016) Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane. Desalination 389:129–136. https://doi.org/10.1016/j.desal.2015.11.028

    Article  Google Scholar 

  59. Shah AA, H-g C, Nam S-E, Park A, Lee PS, Park Y-I, Park H (2017) Optimization of polysulfone support layer for thin-film composite forward osmosis membrane. Desalin Water Treat 99:155–181. https://doi.org/10.5004/dwt.2017.21650

    Article  Google Scholar 

  60. Lu P, Liang S, Qiu L, Gao Y, Wang Q (2016) Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates. J Membr Sci 504:196–205. https://doi.org/10.1016/j.memsci.2015.12.066

    Article  Google Scholar 

  61. Park MJ, Gonzales RR, Abdel-Wahab A, Phuntsho S, Shon HK (2018) Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 426:50–59. https://doi.org/10.1016/j.desal.2017.10.042

    Article  Google Scholar 

  62. Zhang X, Tian J, Ren Z, Shi W, Zhang Z, Xu Y, Gao S, Cui F (2016) High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly (arylene ether sulfone) multiblock copolymer/polysulfone substrate. J Membr Sci 520:529–539. https://doi.org/10.1016/j.memsci.2016.08.005

    Article  Google Scholar 

  63. Qiu M, Wang J, He C (2018) A stable and hydrophilic substrate for thin-film composite forward osmosis membrane revealed by in-situ cross-linked polymerization. Desalination 433:1–9. https://doi.org/10.1016/j.desal.2018.01.021

    Article  Google Scholar 

  64. Ghanbari M, Emadzadeh D, Lau WJ, Riazi H, Almasi D, Ismail AF (2016) Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates. Desalination 377:152–162. https://doi.org/10.1016/j.desal.2015.09.019

    Article  Google Scholar 

  65. Shokrollahzadeh S, Tajik S (2018) Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination 425:68–76. https://doi.org/10.1016/j.desal.2017.10.017

    Article  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the National Key Technology Support Program (no. 2014BAD12B06); National Natural Science Foundation of China (no. 21306058); Natural Science Foundation of Hubei Scientific Committee (2016CFA001); and Opening project of Key Laboratory of Biomedical Polymers of Ministry of Education at Wuhan University (no. 20140401). Special thanks are also given to the Analysis and Testing Center, the Analysis and Testing Center of Chemistry and Chemical Engineering School, and the State Key Laboratory of Materials Processing and Die & Mould Technology, in Huazhong University of Science and Technology, for their help with material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Tian, L., Zuo, J. et al. Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination. Adv Compos Hybrid Mater 2, 51–69 (2019). https://doi.org/10.1007/s42114-018-0070-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0070-1

Keywords

Navigation