Skip to main content
Log in

State-of-the-art review on geoenvironmental benign applicability of biopiles

  • State-of-the-art paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Biopile treatment is a controlled organic cycle where biodegradable foreign substances are changed over to their fundamental mineral constituents (water and carbon dioxide) under oxygen-consuming conditions. The contaminated soil is excavated and accumulated in the treatment region. This uncovered soil is then framed into a pile which is termed as biopile, and the air is circulated through to advance biodegradation which is usually accomplished by native microorganisms. The debasement efficiency is enhanced by controlling parameters such as dampness content, pH, air circulation, temperature, and carbon-to-nitrogen proportion. This method is most effective in hydrocarbon-rich contaminant soils. Furthermore, the vigorous microbial movement debases the oil-based constituents adsorbed to soil particles, thereby subsequently reducing the groupings of these foreign substances. Target toxins, like gas, stream fuel, diesel fuel, and other petrol-derived items are taken out from the dirt by biodegradation and volatilization in the biopile. In this review, a thorough discussion is made on the different types of soils subjected to biopile treatment and the influence of several factors such as oxygen content, moisture content, pH, temperature, and nutrients on the efficiency of the biopile remediation technique. A comprehensive comparison is also drawn between the several types of bioremediation techniques such as landfarming, bioventing, phytoremediation, and composting to name a few. The cost-effectiveness of biopile treatment over other existing bioremediation techniques is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ogbonnaya U, Semple K (2013) Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy (Basel) 3:349–375. https://doi.org/10.3390/agronomy3020349

    Article  Google Scholar 

  2. Wen D, Fu R, Li Q (2021) Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review. J Hazard Mater 401:123345. https://doi.org/10.1016/j.jhazmat.2020.123345

    Article  Google Scholar 

  3. Kotresha K, Mohammed SAS, Sanaulla PF, Moghal AAB, Moghal AAB (2021) Evaluation of sequential extraction procedure (SEP) to validate binding mechanisms in soils and soil-nano-calcium-silicate (SNCS) mixtures. Indian Geotech j 51:1069–1077. https://doi.org/10.1007/s40098-020-00464-w

    Article  Google Scholar 

  4. Mohammed SAS, Moghal AAB (2016) Efficacy of nano calcium silicate (NCS) treatment on tropical soils in encapsulating heavy metal ions: leaching studies validation. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-016-0024-9.10.1007/s41062-016-0024-9

    Article  Google Scholar 

  5. Kim K-H, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. https://doi.org/10.1016/j.envint.2013.07.019

    Article  Google Scholar 

  6. Alrumman SA, Standing DB, Paton GI (2015) Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J King Saud Univ Sci 27:31–41. https://doi.org/10.1016/j.jksus.2014.10.001

    Article  Google Scholar 

  7. Peng S, Zhou Q, Cai Z, Zhang Z (2009) Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater 168:1490–1496. https://doi.org/10.1016/j.jhazmat.2009.03.036

    Article  Google Scholar 

  8. Davie-Martin CL, Stratton KG, Teeguarden JG et al (2017) Implications of bioremediation of polycyclic aromatic hydrocarbon-contaminated soils for human health and cancer risk. Environ Sci Technol 51:9458–9468. https://doi.org/10.1021/acs.est.7b02956

    Article  Google Scholar 

  9. Ramirez MI, Arevalo AP, Sotomayor S, Bailon-Moscoso N (2017) Contamination by oil crude extraction–Refinement and their effects on human health. Environ Pollut 231:415–425. https://doi.org/10.1016/j.envpol.2017.08.017

    Article  Google Scholar 

  10. Ite EA, Ibok JU (2013) Gas flaring and venting associated with petroleum exploration and production in the Nigeria’s Niger Delta. Am J Environ Prot 1:70–77. https://doi.org/10.12691/env-1-4-1

    Article  Google Scholar 

  11. E. Ite EA, J. Ibok U, U. Ite M, W. Petters S (2013) Petroleum exploration and production: Past and present environmental issues in the Nigeria’s Niger Delta. Am J Environ Prot 1(4):78-90. https://doi.org/10.12691/env-1-4-2

  12. Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161

    Article  Google Scholar 

  13. Moghal AAB, Vydehi KV (2021) State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-021-00462-8

    Article  Google Scholar 

  14. Jaiswal S, Shukla P (2020) Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol 11:808. https://doi.org/10.3389/fmicb.2020.00808

    Article  Google Scholar 

  15. Azubuike CC, Chikere CB, Okpokwasili GC (2020) Bioremediation: an eco-friendly sustainable technology for environmental management. In: Bioremediation of industrial waste for environmental safety. Springer Singapore, Singapore, pp 19–39. https://doi.org/10.1007/978-981-13-1891-7_2

  16. Moghal AAB, Lateef MA, Abu Sayeed Mohammed S, Ahmad M, Usman ARA, Almajed A (2020) Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique. Appl Sci (Basel) 10:7568. https://doi.org/10.3390/app10217568

    Article  Google Scholar 

  17. Federal Remediation Technologies Roundtable. In: Frtr.gov. https://frtr.gov/ Accessed 7 Dec 2021

  18. Singh P, Singh VK, Singh R, et al (2020) Bioremediation. In: Abatement of environmental pollutants. Elsevier, pp 1–23. https://doi.org/10.1016/B978-0-12-818095-2.00001-1

  19. Dastgheib SMM, Amoozegar MA, Khajeh K, Ventosa A (2011) A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol 90:305–312. https://doi.org/10.1007/s00253-010-3049-6

    Article  Google Scholar 

  20. Genovese M, Denaro R, Cappello S et al (2008) Bioremediation of benzene, toluene, ethylbenzene, xylenes-contaminated soil: a biopile pilot experiment. J Appl Microbiol 105:1694–1702. https://doi.org/10.1111/j.1365-2672.2008.03897.x

    Article  Google Scholar 

  21. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. https://doi.org/10.4061/2011/941810

    Article  Google Scholar 

  22. Kao CM, Chien HY, Surampalli RY, Sung WP (2009) Application of biopile system for the remediation of petroleum-hydrocarbon contaminated soils. In: World Environmental and Water Resources Congress 2009. American Society of Civil Engineers, Reston, VA. https://doi.org/10.1061/41036(342)260

  23. Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Reg Sci Technol 54:7–18. https://doi.org/10.1016/j.coldregions.2007.09.003

    Article  Google Scholar 

  24. Hazen TC, Tien AJ, Worsztynowicz A, et al (2003) Biopiles for remediation of petroleum-contaminated soils: a polish case study. In: The utilization of bioremediation to reduce soil contamination: problems and solutions. Springer Netherlands, Dordrecht, pp 229–246. https://doi.org/10.1007/978-94-010-0131-1_21

  25. Rhykerd RL, Crews B, McInnes KJ, Weaver RW (1999) Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresour Technol 67:279–285. https://doi.org/10.1016/S0960-8524(98)00114-X

    Article  Google Scholar 

  26. Mohn WW, Radziminski CZ, Fortin MC, Reimer KJ (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247. https://doi.org/10.1007/s002530100713

    Article  Google Scholar 

  27. Das BM (2010) Principles of geotechnical engineering, 7th edn. Cengage Learning, Stamford

    Google Scholar 

  28. Filler DM, Lindstrom JE, Braddock JF et al (2001) Integral biopile components for successful bioremediation in the Arctic. Cold Reg Sci Technol 32:143–156. https://doi.org/10.1016/S0165-232X(01)00020-9

    Article  Google Scholar 

  29. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. https://doi.org/10.1104/pp.111.175448

    Article  Google Scholar 

  30. Jørgensen KS, Puustinen J, Suortti AM (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107:245–254. https://doi.org/10.1016/S0269-7491(99)00144-X

    Article  Google Scholar 

  31. Kristensen AH, Henriksen K, Mortensen L et al (2010) Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface. Vadose Zone J 9:137–147. https://doi.org/10.2136/vzj2009.0010

    Article  Google Scholar 

  32. Mao D, Lookman R, Van De Weghe H et al (2009) Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography. J Chromatogr A 1216:1524–1527. https://doi.org/10.1016/j.chroma.2008.12.087

    Article  Google Scholar 

  33. Rojas-Avelizapa NG, Roldán-Carrillo T, Zegarra-Martínez H et al (2007) A field trial for an ex situ bioremediation of a drilling mud-polluted site. Chemosphere 66:1595–1600. https://doi.org/10.1016/j.chemosphere.2006.08.011

    Article  Google Scholar 

  34. Rostami S, Azhdarpoor A (2019) The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220:818–827. https://doi.org/10.1016/j.chemosphere.2018.12.203

    Article  Google Scholar 

  35. Germaine KJ, Byrne J, Liu X et al (2014) Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. Front Plant Sci 5:756. https://doi.org/10.3389/fpls.2014.00756

    Article  Google Scholar 

  36. Lukić B, Panico A, Huguenot D et al (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environ Technol Rev 6:94–116. https://doi.org/10.1080/21622515.2017.1310310

    Article  Google Scholar 

  37. Guarino C, Spada V, Sciarrillo R (2017) Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioaugmentation-Assisted Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170:10–16. https://doi.org/10.1016/j.chemosphere.2016.11.165

    Article  Google Scholar 

  38. Aiban SA (1998) The effect of temperature on the engineering properties of oil-contaminated sands. Environ Int 24:153–161. https://doi.org/10.1016/S0160-4120(97)00131-1

    Article  Google Scholar 

  39. Abousnina RM (2016) An overview on oil contaminated sand and its engineering applications. Int J Geomate. https://doi.org/10.21660/2016.19.150602

    Article  Google Scholar 

  40. Salimnezhad A, Soltani-Jigheh H, Soorki AA (2021) Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. J Rock Mech Geotech Eng 13:653–670. https://doi.org/10.1016/j.jrmge.2020.11.011

    Article  Google Scholar 

  41. Coulon F, Al Awadi M, Cowie W et al (2010) When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158:3032–3040. https://doi.org/10.1016/j.envpol.2010.06.001

    Article  Google Scholar 

  42. Low MG (1987) Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J 244:1–13. https://doi.org/10.1042/bj2440001

    Article  Google Scholar 

  43. Santamarina JC, Klein KA, Wang YH, Prencke E (2002) Specific surface: determination and relevance. Can Geotech J 39:233–241. https://doi.org/10.1139/t01-077

    Article  Google Scholar 

  44. Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Phytoremediation of Soil and water contaminants. American Chemical Society, Washington, DC, pp 2–17. https://doi.org/10.1021/bk-1997-0664.ch001

  45. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172. https://doi.org/10.1351/pac200173071163

    Article  Google Scholar 

  46. Chen M, Xu P, Zeng G et al (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003

    Article  Google Scholar 

  47. US EPA (1994) How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: Chapter IV – Biopiles. https://www.epa.gov/sites/default/files/201403/documents/tum_ch4.pdf. Accessed 7 Dec 2021

  48. Iqbal J (2003) Effect of temperature on efficiency of in situ bioremediation technology: a laboratory microcosm and field study. LSU Master's Theses. 203. https://digitalcommons.lsu.edu/gradschool_theses/203. Accessed 7 Dec 2021

  49. Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173. https://doi.org/10.1016/j.coldregions.2008.07.004

    Article  Google Scholar 

  50. Ma J, Yang Y, Dai X et al (2016) Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere 150:17–23. https://doi.org/10.1016/j.chemosphere.2016.01.123

    Article  Google Scholar 

  51. Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179. https://doi.org/10.1007/s00792-005-0498-4

    Article  Google Scholar 

  52. Lopes JA, Silva G, Marques M, Correa SM (2017) Bioremediation of clayey soil contaminated with crude oil: comparison of dynamic and static biopiles in lab-scale. Linnaeus Eco-Tech. https://doi.org/10.15626/eco-tech.2014.022

    Article  Google Scholar 

  53. Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegrad 89:103–109. https://doi.org/10.1016/j.ibiod.2014.01.010

    Article  Google Scholar 

  54. Trotsky J, Pal D (1998) Biocell application guidance. TR-2092-ENV, Naval Facilities Engineering Service Center. https://apps.dtic.mil/sti/pdfs/ADA351592.pdf. Accessed 7 Dec 2021

  55. Walworth J, Pond A, Snape I et al (2007) Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg Sci Technol 48:84–91. https://doi.org/10.1016/j.coldregions.2006.07.001

    Article  Google Scholar 

  56. Macht F, Eusterhues K, Pronk GJ, Totsche KU (2011) Specific surface area of clay minerals: comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Appl Clay Sci 53:20–26. https://doi.org/10.1016/j.clay.2011.04.006

    Article  Google Scholar 

  57. Khamehchiyan M, Hossein Charkhabi A, Tajik M (2007) Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Eng Geol 89:220–229. https://doi.org/10.1016/j.enggeo.2006.10.009

    Article  Google Scholar 

  58. Wang X, Wang Q, Wang S et al (2012) Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111:308–315. https://doi.org/10.1016/j.biortech.2012.01.158

    Article  Google Scholar 

  59. Jiang J, Wang S, Wang L et al (2021) The improvement of pore characteristics, remediation efficiency, and biotoxicity of petroleum-contaminated soil with the addition of bulking agent on field-scale biopile treatment. J Soils Sediments 21:2855–2864. https://doi.org/10.1007/s11368-021-02992-1

    Article  Google Scholar 

  60. Khosravi E, Ghasemzadeh H, Sabour MR, Yazdani H (2013) Geotechnical properties of gas oil-contaminated kaolinite. Eng Geol 166:11–16. https://doi.org/10.1016/j.enggeo.2013.08.004

    Article  Google Scholar 

  61. Kermani M, Ebadi T (2012) The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil Sediment Contam 21:655–671. https://doi.org/10.1080/15320383.2012.672486

    Article  Google Scholar 

  62. Abousnina RM, Manalo A, Lokuge W, Shiau J (2015) Oil Contaminated sand: an emerging and sustainable construction material. Proc Eng 118:1119–1126. https://doi.org/10.1016/j.proeng.2015.08.453

    Article  Google Scholar 

  63. Puri VK (2000) Geotechnical aspects of oil-contaminated sands. J Soil Contam 9:359–374. https://doi.org/10.1080/10588330091134301

    Article  Google Scholar 

  64. Safehian H, Rajabi AM, Ghasemzadeh H (2018) Effect of diesel-contamination on geotechnical properties of illite soil. Eng Geol 241:55–63. https://doi.org/10.1016/j.enggeo.2018.04.020

    Article  Google Scholar 

  65. Moghal AAB, Mohammed SAS, Almajed A, Al-Shamrani MA (2020) Desorption of heavy metals from lime-stabilized arid-soils using different extractants. Int J Civ Eng 18:449–461. https://doi.org/10.1007/s40999-019-00453-y

    Article  Google Scholar 

  66. Lin T-C, Pan P-T, Cheng S-S (2010) Ex situ bioremediation of oil-contaminated soil. J Hazard Mater 176:27–34. https://doi.org/10.1016/j.jhazmat.2009.10.080

    Article  Google Scholar 

  67. Dias RL, Ruberto L, Calabró A et al (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687. https://doi.org/10.1007/s00300-014-1630-7

    Article  Google Scholar 

  68. Smith E, Thavamani P, Ramadass K et al (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegrad 101:56–65. https://doi.org/10.1016/j.ibiod.2015.03.029

    Article  Google Scholar 

  69. Benyahia F, Embaby AS (2016) Bioremediation of crude oil contaminated desert soil: effect of biostimulation, bioaugmentation and bioavailability in biopile treatment systems. Int J Environ Res Public Health 13:219. https://doi.org/10.3390/ijerph13020219

    Article  Google Scholar 

  70. Zhang K, Wang S, Guo P, Guo S (2021) Characteristics of organic carbon metabolism and bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system. Chemosphere 264:128521. https://doi.org/10.1016/j.chemosphere.2020.128521

    Article  Google Scholar 

  71. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation, Egypt. J Pet 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  72. Colwell RR (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit Rev Microbiol 5:423–445. https://doi.org/10.3109/10408417709102813

    Article  Google Scholar 

  73. Yemashova NA, Murygina VP, Zhukov DV et al (2007) Biodeterioration of crude oil and oil derived products: a review. Rev Environ Sci Biotechnol 6:315–337. https://doi.org/10.1007/s11157-006-9118-8

    Article  Google Scholar 

  74. Tegene BG, Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute, P.O. Box 30726, Addis Ababa, Ethiopia, Tenkegna TA, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176 (2020) Mode of action, mechanism and role of microbes in bioremediation service for environmental pollution management. J Biotechnol Bioinforma Res. https://doi.org/10.47363/JBBR/2020(2)116

    Article  Google Scholar 

  75. Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew: genomics update. Microb Biotechnol 2:587–594. https://doi.org/10.1111/j.1751-7915.2009.00151.x

    Article  Google Scholar 

  76. McDonald IR, Miguez CB, Rogge G et al (2006) Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 255:225–232. https://doi.org/10.1111/j.1574-6968.2005.00090.x

    Article  Google Scholar 

  77. Plotnikova EG, Yastrebova OV, Anan’ina LN et al (2011) Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Russ J Ecol 42:502–509. https://doi.org/10.1134/s1067413611060130

    Article  Google Scholar 

  78. Van Beilen JB, Neuenschwander M, Smits THM et al (2002) Rubredoxins involved in alkane degradation. J Bacteriol 184:1722–1732. https://doi.org/10.1128/JB.184.6.1722-1732.2002

    Article  Google Scholar 

  79. Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5. https://doi.org/10.1071/en06019

    Article  Google Scholar 

  80. Van Beilen JB, Funhoff EG, van Loon A et al (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65. https://doi.org/10.1128/AEM.72.1.59-65.2006

    Article  Google Scholar 

  81. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H et al (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328. https://doi.org/10.1007/s00792-010-0312-9

    Article  Google Scholar 

  82. Tapilatu YH, Grossi V, Acquaviva M et al (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231. https://doi.org/10.1007/s00792-010-0301-z

    Article  Google Scholar 

  83. Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087. https://doi.org/10.1002/10970061(20000915)16:12%3c1077::AIDYEA601%3e3.0.CO;2-K

    Article  Google Scholar 

  84. Gauthier MJ, Lafay B, Christen R et al (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576. https://doi.org/10.1099/00207713-42-4-568

    Article  Google Scholar 

  85. Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J Bacteriol 178:3695–3700. https://doi.org/10.1128/jb.178.13.3695-3700.1996

    Article  Google Scholar 

  86. Huu NB, Denner EB, Ha DT et al (1999) Marinobacter aquaeolei sp. Nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49(Pt 2):367–375. https://doi.org/10.1099/00207713-49-2-367

    Article  Google Scholar 

  87. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263. https://doi.org/10.1111/j.1472-765X.1990.tb00176.x

    Article  Google Scholar 

  88. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037

    Article  Google Scholar 

  89. Holliger C, Gaspard S, Glod G et al (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20:517–523. https://doi.org/10.1111/j.1574-6976.1997.tb00334.x

    Article  Google Scholar 

  90. Olajire AAEJP (2014) Aerobic degradation of petroleum components by microbial consortia. J Pet Environ Biotechnol. https://doi.org/10.4172/2157-7463.1000195

    Article  Google Scholar 

  91. Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1:117–138. https://doi.org/10.1007/s13205-011-0014-8

    Article  Google Scholar 

  92. Stroud JL, Paton GI, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253. https://doi.org/10.1111/j.1365-2672.2007.03401.x

    Article  Google Scholar 

  93. Wu G, Coulon F (2015) Protocol for biopile construction treating contaminated soils with petroleum hydrocarbons. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer Protocols Handbooks. Springer, Berlin. https://doi.org/10.1007/8623_2015_149

    Chapter  Google Scholar 

  94. Zheng Y-M, Xi B-D, Shan G-C et al (2021) High proportions of petroleum loss ascribed to volatilization rather than to microbial degradation in greenhouse-enhanced biopile. J Clean Prod 303:127084. https://doi.org/10.1016/j.jclepro.2021.127084

    Article  Google Scholar 

  95. Besalatpour A, Hajabbasi MA, Khoshgoftarmanesh AH, Dorostkar V (2011) Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam 20:234–248. https://doi.org/10.1080/15320383.2011.546447

    Article  Google Scholar 

  96. Broekema W (2016) Crisis-induced learning and issue politicization in the Eu: The braer, sea empress, Erika, and prestigeoil spill disasters: crisis-induced learning and issue politicization. Public Adm 94:381–398. https://doi.org/10.1111/padm.12170

    Article  Google Scholar 

  97. Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109:14–45. https://doi.org/10.1016/j.marpolbul.2016.04.023

    Article  Google Scholar 

  98. Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol Biochem 32:1161–1172. https://doi.org/10.1016/S0038-0717(00)00032-8

    Article  Google Scholar 

  99. Battelle Environmental Restoration Department (1996) Biopile design and construction manual. naval facilities engineering service center. https://clu-in.org/download/techfocus/bio/Biopile-design-and-construction-1996-tm-2189.pdf Accessed 5 Dec 2021

  100. Soares EV, Soares HMVM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int 19:1066–1083. https://doi.org/10.1007/s11356-011-0671-5

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Institute of Technology, Warangal, India, under “Research Seed Grant No: NITW/AC-7/RSM-Bdgt/2018-2019/P1015” and the Ministry of Education (formerly known as Ministry of Human Resource and Development), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Ali Baig Moghal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, M., Moghal, A.A.B., Rasheed, R.M. et al. State-of-the-art review on geoenvironmental benign applicability of biopiles. Innov. Infrastruct. Solut. 7, 166 (2022). https://doi.org/10.1007/s41062-022-00774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00774-3

Keywords

Navigation