Skip to main content

Advertisement

Log in

A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradation of petroleum compounds in saline environments seems intricate and needs more attention. In this study, tetracosane was used to enrich alkane-degrading bacteria from oil-contaminated saline soils. Among the isolates, strain Qtet3, with the highest 16s rRNA gene sequence similarity to Alcanivorax dieselolei B-5T, was able to grow at a wide range of NaCl concentrations and was shown by GC analysis to degrade more than 90% of tetracosane in 10 days. This strain has at least two alkB genes and could grow on crude oil and diesel fuel, and utilize various pure aliphatic hydrocarbon substrates (from C12 to C34). Highly hydrophobic cell surfaces and lack of significant surface tension reduction in the media suggest that the main mechanism of the cells for accessing substrate is to attach directly to hydrocarbon particles. Application of this strain for remediating crude oil-contaminated soils irrigated with defined saline water demonstrated that this halotolerant bacterium could survive and grow in saline soils irrigated with NaCl solutions up to 5% w/v, with the highest hydrocarbon degradation of 26.1% observed at 2.5% NaCl. This strain is promising for future industrial applications especially in bioremediation of saline soils and wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizenshtat Z, Miloslavski I, Aschengrau D, Oren A (1999) Hypersaline depositional environments and their relation to oil generation. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC, Boca Raton, pp 89–108

    Google Scholar 

  • Al-Mahruki A, Al-Mueini R, Al-Mahrooqi Y, Al-Sabahi A, Roos GHP, Patzelt H (2006) Significantly enhanced landfarm performance through the use of saline water and weekly tilling. J Petrol Tech 58(7):79–81

    Google Scholar 

  • Ananyina LN, Plotnikova EG, Gavrish EY, Demakov VA, Evtushenko LI (2007) Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. Mikrobiologiya 76:324–330

    Google Scholar 

  • Artz RRE, Semple KT, Kilham K, Prosser JI, Paton GI (2003) The potential for anaerobic mineralization of hydrocarbon constituents of oily drill cuttings from the North Sea seabed. J Environ Monit 4:553–557

    Article  Google Scholar 

  • Borzenkov IA, Milekhina EI, Gotoeva MT, Rozanova EP, Belyaev SS (2006) The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam. Microbiology 75(1):66–72. doi:10.1134/S0026261706010127

    Article  CAS  Google Scholar 

  • Cappello S, Yakimov MM (2010) Alcanivorax. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1737–1748. doi:10.1007/978-3-540-77587-4_123

    Chapter  Google Scholar 

  • Chamkha M, Mnif S, Sayadi S (2008) Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol Lett 283:23–29

    Article  CAS  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  Google Scholar 

  • Cuadros-Orellana S, Pohlschroder M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegrad 57:151–154. doi:10.1016/j.ibiod.2005.04.005

    Article  CAS  Google Scholar 

  • Eaton AD (2005) Standard methods for the examination of water & wastewater, 5520F, American Public Health Association, Mary Ann H. Franson, American Public Health Association

  • Gauthier MJ, LaFay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand J-C (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  CAS  Google Scholar 

  • Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Micr 52:901–911. doi:10.1099/ijs.0.01890-0

    Article  CAS  Google Scholar 

  • Hara A, Baik S, Syutsubo K, Misawa N, Smits THM, van Beilen JB, Harayama S (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6(3):191–197

    Article  CAS  Google Scholar 

  • Hart DJ, Vreeland RH (1988) Changes in the hydrophobic–hydrophilic cell surface character of Halomonas elongata in response to NaCl. J Bacteriol 170:132–135

    CAS  Google Scholar 

  • ISO 11265 (1994) Soil quality—Determination of the specific electrical conductivity

  • Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4(3):141–147

    Article  CAS  Google Scholar 

  • Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43(2):454–457

    CAS  Google Scholar 

  • Kleinsteuber S, Riis V, Fetzer I, Harms H, Muller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Env Microbiol 72:3531–3542

    Article  CAS  Google Scholar 

  • Kumar M, León V, De Sistro MA, Ilzins OA (2007) A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tension active emulsifying agent. World J Microbiol Biotechnol 23:211–220

    Article  CAS  Google Scholar 

  • Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN (1992) Streptomyces albiaxialis sp. nov.—a new petroleum hydrocarbon-degrading species of thermo- and halotolerant Streptomyces. Microbiol Moscow 61:62–67

    Google Scholar 

  • Le Borgne S, Le Borgne S, Paniagua D, Vasquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic Bacteria and Archaea. J Mol Microbiol Biotechnol 15:74–92. doi:10.1159/000121323

    Article  Google Scholar 

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186. doi:10.1099/ijs.0.63443-0

    Article  CAS  Google Scholar 

  • 2Liu YC, Li LZ, Wua Y, Tian W, Zhang LP, Xu L, Shen QR, Shen B (2010) Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresour Technol 101:310–316

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin. doi:10.1007/978-3-540-77587-4_123

    Google Scholar 

  • Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg Lond 38(6):732–749

    Article  CAS  Google Scholar 

  • Olivera NL, Nievas ML, Lozada M, Del Prado G, Dionisi HM, Sineriz F (2009) Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Res Microbiol 160:19–26

    Article  CAS  Google Scholar 

  • Patzelt H (2005) Hydrocarbon degradation under hypersaline conditions—some facts, some experiments and many open questions. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria and Eukarya. Springer, Berlin, pp 105–122

    Chapter  Google Scholar 

  • Plakunov VK, Zhurina MV, Belyaev SS (2008) Resistance of the oil-oxidizing microorganism Dietzia sp. to hyperosmotic shock in reconstituted biofilms. Microbiol Moscow 77(5):515–522. doi:10.1134/S0026261708050019

    CAS  Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinity on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721

    Article  CAS  Google Scholar 

  • Romano I, Lama L, Orlando P, Nicolaus B, Giordano A, Gambacorta A (2007) Halomonas sinaiensis sp. nov., a novel halophilic bacterium isolated from a salt lake inside Ras Muhammad Park, Egypt. Extremophiles 11:789–796. doi:10.1007/s00792-007-0100-3

    Article  CAS  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Sal Sys 4:8

    Article  Google Scholar 

  • Schneiker S, Martins dos Santos VAP, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter F-J, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    Article  CAS  Google Scholar 

  • Speight JG (1998) The chemistry and technology of petroleum. Marcel Dekker, New York

    Google Scholar 

  • Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jiang ZF, Wu XL (2007) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226

    Article  CAS  Google Scholar 

  • Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Env Microbiol 35:353–359

    CAS  Google Scholar 

  • Whitehouse BG (1984) The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem 14:319–332

    Article  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkurnensis gen. now, sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Micr 53:779–785. doi:10.1099/ijs.0.02366-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Ali Amoozegar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dastgheib, S.M.M., Amoozegar, M.A., Khajeh, K. et al. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol 90, 305–312 (2011). https://doi.org/10.1007/s00253-010-3049-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3049-6

Keywords

Navigation