Skip to main content
Log in

The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [72]. Copyright 2019, American Chemical Society b The substitution effect on the HOMO and LUMO energy levels and the HOMO–LUMO gaps of (I) the staggered ferrocene and (II) the eclipsed ferrocene. Reproduced with permission from Ref. [73]. Copyright 2007, John Wiley & Sons

Fig. 4
Fig. 5

Reproduced with permission from Ref. [112]. Copyright 2019, Springer Nature

Fig. 6

Reproduced with permission from Ref. [113]. Copyright 2018, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [114]. Copyright 2015, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [115]. Copyright 2019, The Royal Society of Chemistry

Fig. 9

Reproduced with permission from Ref. [115]. Copyright 2019, The Royal Society of Chemistry

Fig. 10

Reproduced with permission from Ref. [116]. Copyright 2022, The Royal Society of Chemistry

Fig. 11

Reproduced with permission from Ref. [133]. Copyright 2020, Elsevier

Fig. 12

Reproduced with permission from Ref. [133]. Copyright 2020, Elsevier

Fig. 13

Reproduced with permission from Ref. [139]. Copyright 2015, John Wiley & Sons

Fig. 14

Reproduced with permission from Ref. [140]. Copyright 2011, John Wiley & Sons

Fig. 15

Reproduced with permission from Ref. [95]. Copyright 2021, Elsevier

Fig. 16

Reproduced with permission from Ref. [18]. Copyright 2018, Elsevier

Fig. 17

Reproduced with permission from Ref. [112]. Copyright 2019, Springer Nature

Fig. 18

Reproduced with permission from Ref. [172]. Copyright 2021, American Chemical Society

Fig. 19

Reproduced with permission from Ref. [178]. Copyright 2021, The Royal Society of Chemistry

Fig. 20

Reproduced with permission from Ref. [215]. Copyright 2022, Elsevier

Fig. 21

Reproduced with permission from Ref. [116]. Copyright 2022, The Royal Society of Chemistry

Fig. 22

Reproduced with permission from Ref. [243]. Copyright 2022, Elsevier

Fig. 23

Reproduced with permission from Ref. [151]. Copyright 2016, Elsevier

Similar content being viewed by others

Data availability

The data utilized in this review article primarily originate from the referenced literature. All sources cited in this study provide the necessary information to access the respective datasets and can be obtained through the corresponding references. It is important to note that the availability of data may vary depending on the original authors’ guidelines and restrictions. Researchers interested in accessing the data used in this review are encouraged to refer to the provided references for further details. 

References

  1. Štěpnička P (2022) Forever young: the first seventy years of ferrocene. Dalton Trans 51:8085–8102. https://doi.org/10.1039/d2dt00903j

    Article  CAS  PubMed  Google Scholar 

  2. Beitollahi H, Khalilzadeh MA, Tajik S et al (2020) Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives. ACS Omega 5:2049–2059. https://doi.org/10.1021/acsomega.9b03788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilkinson G, Rosenblum M, Whiting MC, Woodward RB (1952) The structure of iron bis-cyclopentadienyl. J Am Chem Soc 74:2125–2126. https://doi.org/10.1021/ja01128a527

    Article  CAS  Google Scholar 

  4. Eiland PF, Pepinsky R (1952) X-ray examination of iron biscyclopentadienyl. J Am Chem Soc 74:4971. https://doi.org/10.1021/ja01139a527

    Article  CAS  Google Scholar 

  5. Ertas NA, Kavak E, Salman F et al (2020) Synthesis of ferrocene based naphthoquinones and its application as novel non-enzymatic hydrogen peroxide. Electroanalysis 32:1178–1185. https://doi.org/10.1002/elan.201900715

    Article  CAS  Google Scholar 

  6. Locke AJ, Richards CJ (1999) Asymmetric synthesis of [3](1,1′)- and [3](1,1′)[3](3,3′)-ferrocenophanes. Organometallics 18:3750–3759. https://doi.org/10.1021/om990171g

    Article  CAS  Google Scholar 

  7. Okamoto S, Morita T, Kimura S (2009) Electron transfer through a self-assembled monolayer of a double-helix peptide with linking the terminals by ferrocene. Langmuir 25:3297–3304. https://doi.org/10.1021/la8034962

    Article  CAS  PubMed  Google Scholar 

  8. Wang WY, Ma NN, Sun SL, Qiu YQ (2014) Impact of redox stimuli on ferrocene-buckybowl complexes: switchable optoelectronic and nonlinear optical properties. Organometallics 33:3341–3352. https://doi.org/10.1021/om500224g

    Article  CAS  Google Scholar 

  9. Hillard E, Vessières A, Thouin L et al (2006) Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates. Angew Chem 118:291–296. https://doi.org/10.1002/ange.200502925

    Article  Google Scholar 

  10. Liu X, Xiang Y, Ma X et al (2017) Ferrocene macrocyclic Schiff base complex: synthesis, structure and recognition properties for dual Hg2+ and Cu2+. Russ J Gen Chem 87:2986–2988. https://doi.org/10.1134/S1070363217120428

    Article  CAS  Google Scholar 

  11. Liu KG, Rouhani F, Gao XM et al (2020) Bilateral photocatalytic mechanism of dye degradation by a designed ferrocene-functionalized cluster under natural sunlight. Catal Sci Technol 10:757–767. https://doi.org/10.1039/c9cy02003a

    Article  CAS  Google Scholar 

  12. Sun R, Wang L, Yu H et al (2014) Molecular recognition and sensing based on ferrocene derivatives and ferrocene-based polymers. Organometallics 33:4560–4573. https://doi.org/10.1021/om5000453

    Article  CAS  Google Scholar 

  13. Liang J, Gao X, Guo B et al (2021) Ferrocene-based metal-organic framework nanosheets as a robust oxygen evolution catalyst. Angew Chem Int Ed 60:12770–12774. https://doi.org/10.1002/anie.202101878

    Article  CAS  Google Scholar 

  14. Su X, Kulik HJ, Jamison TF, Hatton TA (2016) Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces. Adv Funct Mater 26:3394–3404. https://doi.org/10.1002/adfm.201600079

    Article  CAS  Google Scholar 

  15. Ghosh T, Sarkar P, Turner APF (2015) A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode. Bioelectrochemistry 102:1–9. https://doi.org/10.1016/j.bioelechem.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  16. Husain M, Husain Q (2007) Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 38:1–42. https://doi.org/10.1080/10643380701501213

    Article  CAS  Google Scholar 

  17. Feng J, Lu Q, Li K et al (2020) Construction of an electron transfer mediator pathway for bioelectrosynthesis by Escherichia coli. Front Bioeng Biotechnol 8:1213. https://doi.org/10.3389/fbioe.2020.590667

    Article  Google Scholar 

  18. Chen Y, Liu X, Wu T et al (2018) Enhanced electrochemical sensitivity towards acetaminophen determination using electroactive self-assembled ferrocene derivative polymer nanospheres with multi-walled carbon nanotubes. Electrochim Acta 272:212–220. https://doi.org/10.1016/j.electacta.2018.04.019

    Article  CAS  Google Scholar 

  19. Lhenry S, Leroux YR, Hapiot P (2012) Use of catechol as selective redox mediator in scanning electrochemical microscopy investigations. Anal Chem 84:7518–7524. https://doi.org/10.1021/ac301634s

    Article  CAS  PubMed  Google Scholar 

  20. Cecchet F, Marcaccio M, Margotti M et al (2006) Redox mediation at 11-mercaptoundecanoic acid self-assembled monolayers on gold. J Phys Chem B 110:2241–2248. https://doi.org/10.1021/jp054290n

    Article  CAS  PubMed  Google Scholar 

  21. Mattoussi M, Matoussi F, Raouafi N (2018) Non-enzymatic amperometric sensor for hydrogen peroxide detection based on a ferrocene-containing cross-linked redox-active polymer. Sens Actuators B Chem 274:412–418. https://doi.org/10.1016/j.snb.2018.07.145

    Article  CAS  Google Scholar 

  22. Kempahanumakkagari S, Vellingiri K, Deep A et al (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    Article  CAS  Google Scholar 

  23. Sroysee W, Chairam S, Amatatongchai M et al (2018) Poly(m-ferrocenylaniline) modified carbon nanotubes-paste electrode encapsulated in nafion film for selective and sensitive determination of dopamine and uric acid in the presence of ascorbic acid. J Saudi Chem Soc 22:173–182. https://doi.org/10.1016/j.jscs.2016.02.003

    Article  CAS  Google Scholar 

  24. Huang N, Liu M, Li H et al (2015) Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra-sensitive detection platform for bisphenol A. Anal Chim Acta 853:249–257. https://doi.org/10.1016/j.aca.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  25. Vorotyntsev MA, Casalta M, Pousson E et al (2001) Redox properties of titanocene-pyrrole derivative and its electropolymerization. Electrochim Acta 46:4017–4033. https://doi.org/10.1016/S0013-4686(01)00717-4

    Article  CAS  Google Scholar 

  26. Jirimali HD, Nagarale RK, Saravanakumar D, Shin W (2018) Ferrocene tethered polyvinyl alcohol/silica film electrode for electrocatalytic sulfite sensing. Electroanalysis 30:828–833. https://doi.org/10.1002/elan.201700459

    Article  CAS  Google Scholar 

  27. Roy G, Gupta R, Ranjan Sahoo S et al (2022) Ferrocene as an iconic redox marker: From solution chemistry to molecular electronic devices. Coord Chem Rev 473:214816. https://doi.org/10.1016/j.ccr.2022.214816

    Article  CAS  Google Scholar 

  28. Pietschnig R (2016) Polymers with pendant ferrocenes. Chem Soc Rev 45:5216–5231. https://doi.org/10.1039/c6cs00196c

    Article  CAS  PubMed  Google Scholar 

  29. Liu KG, Rouhani F, de Shan Q et al (2019) Ultrasonic-assisted fabrication of thin-film electrochemical detector of H2O2 based on ferrocene-functionalized silver cluster. Ultrason Sonochem 56:305–312. https://doi.org/10.1016/j.ultsonch.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  30. Dombrowski KE, Baldwin W, Sheats JE (1986) Metallocenes in biochemistry, microbiology & medicine. J Organomet Chem 302:281–306. https://doi.org/10.1016/0022-328X(86)80097-3

    Article  CAS  Google Scholar 

  31. van Staveren DR, Metzler-Nolte N (2004) Bioorganometallic chemistry of ferrocene. Chem Rev 104:5931–5985. https://doi.org/10.1021/cr0101510

    Article  CAS  PubMed  Google Scholar 

  32. Hu M, Abbasi-Azad M, Habibi B et al (2020) Electrochemical applications of ferrocene-based coordination polymers. ChemPlusChem 85:2397–2418. https://doi.org/10.1002/cplu.202000584

    Article  CAS  PubMed  Google Scholar 

  33. Amer WA, Wang L, Amin AM et al (2010) Recent progress in the synthesis and applications of some ferrocene derivatives and ferrocene-based polymers. J Inorg Organomet Polym Mater 20:605–615. https://doi.org/10.1007/s10904-010-9373-6

    Article  CAS  Google Scholar 

  34. Wu J, Wang L, Yu H et al (2017) Ferrocene-based redox-responsive polymer gels: Synthesis, structures and applications. J Organomet Chem 828:38–51. https://doi.org/10.1016/j.jorganchem.2016.10.041

    Article  CAS  Google Scholar 

  35. Zatsepin TS, Andreev SY, Hianik T, Oretskaya TS (2003) Ferrocene-containing nucleic acids. Synthesis and electrochemical properties. Russ Chem Rev 72:537–554. https://doi.org/10.1070/rc2003v072n06abeh000807

    Article  CAS  Google Scholar 

  36. Zhai X, Yu H, Wang L et al (2016) Recent research progress in the synthesis, properties and applications of ferrocene-based derivatives and polymers with azobenzene. Appl Organomet Chem 30:62–72. https://doi.org/10.1002/aoc.3369

    Article  CAS  Google Scholar 

  37. Huang Z, Yu H, Wang L et al (2021) Ferrocene-contained metal organic frameworks: from synthesis to applications. Coord Chem Rev 430:213737. https://doi.org/10.1016/j.ccr.2020.213737

    Article  CAS  Google Scholar 

  38. Bucher C, Devillers CH, Moutet JC et al (2009) Ferrocene-appended porphyrins: syntheses and properties. Coord Chem Rev 253:21–36. https://doi.org/10.1016/j.ccr.2007.11.025

    Article  CAS  Google Scholar 

  39. Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218. https://doi.org/10.1002/(sici)1521-3773(20000403)39:7%3c1180::aid-anie1180%3e3.0.co;2-e

    Article  CAS  Google Scholar 

  40. Saleem M, Yu H, Wang L et al (2015) Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. Anal Chim Acta 876:9–25. https://doi.org/10.1016/j.aca.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z-Q (2011) Potential applications of ferrocene as a structural feature in antioxidants. Mini-Rev Med Chem 11:345–358. https://doi.org/10.2174/138955711795305326

    Article  CAS  PubMed  Google Scholar 

  42. Patra M, Gasser G (2017) The medicinal chemistry of ferrocene and its derivatives. Nat Rev Chem 1:1–12. https://doi.org/10.1038/s41570-017-0066

    Article  CAS  Google Scholar 

  43. Sahoo SK (2021) Fluorescent chemosensors containing redox-active ferrocene: a review. Dalton Trans 50:11681–11700. https://doi.org/10.1039/d1dt02077c

    Article  CAS  PubMed  Google Scholar 

  44. Pal A, Ranjan Bhatta S, Thakur A (2021) Recent advances in the development of ferrocene based electroactive small molecules for cation recognition: a comprehensive review of the years 2010–2020. Coord Chem Rev 431:213685. https://doi.org/10.1016/j.ccr.2020.213685

    Article  CAS  Google Scholar 

  45. Amin BU, Yu H, Wang L et al (2020) Recent advances on ferrocene-based compounds and polymers as a burning rate catalysts for propellants. J Organomet Chem 921:121368. https://doi.org/10.1016/j.jorganchem.2020.121368

    Article  CAS  Google Scholar 

  46. Tong R, Zhao Y, Wang L et al (2014) Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene-containing polymers and derivatives. J Organomet Chem 755:16–32. https://doi.org/10.1016/j.jorganchem.2013.12.052

    Article  CAS  Google Scholar 

  47. Raoof J-B, Ojani R, Chekin F (2007) Electrochemical analysis of D-penicillamine using a carbon paste electrode modified with ferrocene carboxylic acid. Electroanalysis 19:1883–1889. https://doi.org/10.1002/elan.200703947

    Article  CAS  Google Scholar 

  48. Rebiere F, Samuel O, Kagan HB (1990) A convenient method for the preparation of monolithioferrocene. Tetrahedron Lett 31:3121–3124. https://doi.org/10.1016/S0040-4039(00)94710-5

    Article  CAS  Google Scholar 

  49. Larik FA, Saeed A, Fattah TA et al (2017) Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives. Appl Organomet Chem 31:e3664. https://doi.org/10.1002/aoc.3664

    Article  CAS  Google Scholar 

  50. Khrizanforova VV, Shekurov RP, Nizameev IR et al (2021) Aerogel based on nanoporous aluminium ferrocenyl diphosphinate metal-organic framework. Inorg Chim Acta 518:120240. https://doi.org/10.1016/j.ica.2020.120240

    Article  CAS  Google Scholar 

  51. Sirbu D, Turta C, Benniston AC et al (2014) Synthesis and properties of a meso- tris-ferrocene appended zinc(ii) porphyrin and a critical evaluation of its dye sensitised solar cell (DSSC) performance. RSC Adv 4:22733–22742. https://doi.org/10.1039/c4ra03105a

    Article  CAS  Google Scholar 

  52. Torriero AAJ, Morda J, Saw J (2019) Electrocatalytic dealkylation of amines mediated by ferrocene. Organometallics. https://doi.org/10.1021/acs.organomet.9b00557

    Article  Google Scholar 

  53. Fabre B (2010) Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc Chem Res 43:1509–1518. https://doi.org/10.1021/ar100085q

    Article  CAS  PubMed  Google Scholar 

  54. Yan Q, Zhi N, Yang L et al (2020) A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-67394-8

    Article  CAS  Google Scholar 

  55. Malischewski M, Adelhardt M, Sutter J et al (1979) (2016) Isolation and structural and electronic characterization of salts of the decamethylferrocene dication. Science 353:678–682. https://doi.org/10.1126/science.aaf6362

    Article  CAS  Google Scholar 

  56. Ma L, Wang L, Tan Q et al (2009) Study on synthesis and electrochemical properties of novel ferrocene-based compounds and their applications in anion recognition. Electrochim Acta 54:5413–5420. https://doi.org/10.1016/j.electacta.2009.04.032

    Article  CAS  Google Scholar 

  57. Lennox AJJ, Nutting JE, Stahl SS (2018) Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chem Sci 9:356–361. https://doi.org/10.1039/c7sc04032f

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt-Stein F, Gnichwitz JF, Salonen J et al (2009) Electrochemical wettability control on conductive TiO2 nanotube surfaces modified with a ferrocene redox system. Electrochem commun 11:2000–2003. https://doi.org/10.1016/j.elecom.2009.08.038

    Article  CAS  Google Scholar 

  59. Dai LX, Tu T, You SL et al (2003) Asymmetric catalysis with chiral ferrocene ligands. Acc Chem Res 36:659–667. https://doi.org/10.1021/ar020153m

    Article  CAS  PubMed  Google Scholar 

  60. Bitter S, Kunkel M, Burkart L et al (2018) Organometallic, nonclassical surfactant with gemini design comprising π-conjugated constituents ready for modification. ACS Omega 3:8854–8864. https://doi.org/10.1021/acsomega.8b01405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sha Y, Zhang Y, Xu E et al (2019) Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem Sci 10:4959–4965. https://doi.org/10.1039/c9sc01347d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Congiu M, Nunes-Neto O, de Marco ML et al (2016) Cu2 - XS films as counter-electrodes for dye solar cells with ferrocene-based liquid electrolytes. Thin Solid Films 612:22–28. https://doi.org/10.1016/j.tsf.2016.05.033

    Article  CAS  Google Scholar 

  63. Fabbrizzi L (2020) The ferrocenium/ferrocene couple: a versatile redox switch. ChemTexts 6:1–20. https://doi.org/10.1007/s40828-020-00119-6

    Article  CAS  Google Scholar 

  64. Dunitz JD, Orgel LE (1953) Bis-cyclopentadienyl iron: a molecular sandwich. Nature 171:121–122. https://doi.org/10.1038/171121a0

    Article  CAS  Google Scholar 

  65. Page JA, Wilkinson G (1952) The polarographic chemistry of ferrocene, ruthenocene and the metal hydrocarbon ions. J Am Chem Soc 74:6149–6150. https://doi.org/10.1021/ja01143a540

    Article  CAS  Google Scholar 

  66. Gagne RR, Koval CA, Lisensky GC (1980) Ferrocene as an internal standard for electrochemical measurements. Inorg Chem 19:2854–2855. https://doi.org/10.1021/ic50211a080

    Article  CAS  Google Scholar 

  67. Reynolds LT, Wilkinson G (1959) Some methylcyclopentadienyl-metal compounds. J Inorg Nucl Chem 9:86–92. https://doi.org/10.1016/0022-1902(59)80015-4

    Article  Google Scholar 

  68. Kuwana T, Bublitz DE, Hoh G (1960) Chronopotentiometric studies on the oxidation of ferrocene, ruthenocene, osmocene and some of their derivatives. J Am Chem Soc 82:5811–5817. https://doi.org/10.1021/ja01507a011

    Article  CAS  Google Scholar 

  69. Li R, Chaudhry I, Tseng C et al (2023) SERS detection of charge transfer at electrochemical interfaces using surface-bound ferrocene. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.3c01973

    Article  Google Scholar 

  70. Klenk S, Rupf S, Suntrup L et al (2017) The power of ferrocene, mesoionic carbenes, and gold: redox-switchable catalysis. Organometallics 36:2026–2035. https://doi.org/10.1021/acs.organomet.7b00270

    Article  CAS  Google Scholar 

  71. Neumann P, Dib H, Caminade A, Hey-Hawkins E (2015) Redox control of a dendritic ferrocenyl-based homogeneous catalyst. Angew Chem Int Ed 54:311–314. https://doi.org/10.1002/anie.201408314

    Article  CAS  Google Scholar 

  72. Paul A, Borrelli R, Bouyanfif H et al (2019) Tunable redox potential, optical properties, and enhanced stability of modified ferrocene-based complexes. ACS Omega 4:14780–14789. https://doi.org/10.1021/acsomega.9b01341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang G, Zhang H, Sun M et al (2007) Substitution effect on the geometry and electronic structure of the ferrocene. J Comput Chem 28:2260–2274. https://doi.org/10.1002/jcc.20629

    Article  CAS  PubMed  Google Scholar 

  74. Zhang W, Hirao T, Ikeda I (1996) Interesting and effective P, N-chelation of tetrasubstituted ferrocene ligands for palladium-catalyzed asymmetric allylic substitution. Tetrahedron Lett 37:4545–4548. https://doi.org/10.1016/0040-4039(96)00899-4

    Article  CAS  Google Scholar 

  75. Tu T, Zhou YG, Hou XL et al (2003) Trans effect of different coordinated atoms of planar chiral ferrocene ligands with the same backbone in palladium-catalyzed allylic substitutions. Organometallics 22:1255–1265. https://doi.org/10.1021/om020706x

    Article  CAS  Google Scholar 

  76. Abraham MH, Benjelloun-Dakhama N, Gola JMR et al (2000) Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties. New J Chem 24:825–829. https://doi.org/10.1039/b004291i

    Article  CAS  Google Scholar 

  77. Yousefinejad S, Honarasa F, Solhjoo A (2016) On the solubility of ferrocene in nonaqueous solvents. J Chem Eng Data 61:614–621. https://doi.org/10.1021/acs.jced.5b00768

    Article  CAS  Google Scholar 

  78. Da̧browski M, Misterkiewicz B, Sporzyński A (2001) Solubilities of substituted ferrocenes in organic solvents. J Chem Eng Data 46:1627–1631. https://doi.org/10.1021/je010197q

    Article  CAS  Google Scholar 

  79. Holloway JDL, Geiger WE (1979) Electron-transfer reactions of metallocenes. Influence of metal oxidation state on structure and reactivity. J Am Chem Soc 101:2038–2044. https://doi.org/10.1021/ja00502a018

    Article  CAS  Google Scholar 

  80. Bard AJ, Garcia E, Kukharenko S, Strelets VV (1993) Electrochemistry of metallocenes at very negative and very positive potentials. Electrogeneration of 17-electron Cp2Co2+, Cp2Co2−, and Cp2Ni2− species. Inorg Chem 32:3528–3531. https://doi.org/10.1021/ic00068a024

    Article  CAS  Google Scholar 

  81. Zaitseva AS, Arlyapov VA, Yudina NY et al (2017) Use of one- and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii. Enzyme Microb Technol 98:43–51. https://doi.org/10.1016/j.enzmictec.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  82. Rabti A, Raouafi N, Merkoçi A (2016) Bio(sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon N Y 108:481–514. https://doi.org/10.1016/j.carbon.2016.07.043

    Article  CAS  Google Scholar 

  83. Elancheziyan M, Manoj D, Saravanakumar D et al (2017) Amperometric sensing of catechol using a glassy carbon electrode modified with ferrocene covalently immobilized on graphene oxide. Microchim Acta 184:2925–2932. https://doi.org/10.1007/s00604-017-2312-2

    Article  CAS  Google Scholar 

  84. Avinash MB, Subrahmanyam KS, Sundarayya Y, Govindaraju T (2010) Covalent modification and exfoliation of graphene oxide using ferrocene. Nanoscale 2:1762–1766. https://doi.org/10.1039/c0nr00024h

    Article  CAS  PubMed  Google Scholar 

  85. Teimuri-Mofrad R, Hadi R, Abbasi H (2019) Synthesis and characterization of ferrocene-functionalized reduced graphene oxide nanocomposite as a supercapacitor electrode material. J Organomet Chem 880:355–362. https://doi.org/10.1016/j.jorganchem.2018.11.033

    Article  CAS  Google Scholar 

  86. Fan L, Zhang Q, Wang K et al (2012) Ferrocene functionalized graphene: preparation, characterization and efficient electron transfer toward sensors of H2O2. J Mater Chem 22:6165–6170. https://doi.org/10.1039/c2jm15411k

    Article  CAS  Google Scholar 

  87. Divyapriya G, Nambi I, Senthilnathan J (2018) Ferrocene functionalized graphene based electrode for the electro−Fenton oxidation of ciprofloxacin. Chemosphere 209:113–123. https://doi.org/10.1016/j.chemosphere.2018.05.148

    Article  CAS  PubMed  Google Scholar 

  88. Kilic A, Incebay H, Bayat T (2023) Experimental spectroscopic investigation and electrochemical sensor studies of facile and controllable synthesis of ferrocene-based chiral Schiff base compounds. J Taiwan Inst Chem Eng 147:104924. https://doi.org/10.1016/j.jtice.2023.104924

    Article  CAS  Google Scholar 

  89. Rabti A, Mayorga-Martinez CC, Baptista-Pires L et al (2016) Ferrocene-functionalized graphene electrode for biosensing applications. Anal Chim Acta 926:28–35. https://doi.org/10.1016/j.aca.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  90. Rabti A, Ben Aoun S, Raouafi N (2016) A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Microchim Acta 183:3111–3117. https://doi.org/10.1007/s00604-016-1959-4

    Article  CAS  Google Scholar 

  91. le Goff A, Moggia F, Debou N et al (2010) Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π-stacking interactions and their relevance to glucose bio-sensing. J Electroanal Chem 641:57–63. https://doi.org/10.1016/j.jelechem.2010.01.014

    Article  CAS  Google Scholar 

  92. Singh P, Ménard-Moyon C, Kumar J et al (2012) Nucleobase-pairing triggers the self-assembly of uracil-ferrocene on adenine functionalized multi-walled carbon nanotubes. Carbon N Y 50:3170–3177. https://doi.org/10.1016/j.carbon.2011.10.037

    Article  CAS  Google Scholar 

  93. Moore KE, Flavel BS, Yu J et al (2013) Increased redox-active peptide loading on carbon nanotube electrodes. Electrochim Acta 89:206–211. https://doi.org/10.1016/j.electacta.2012.10.108

    Article  CAS  Google Scholar 

  94. Qiu JD, Zhou WM, Guo J et al (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264–269. https://doi.org/10.1016/j.ab.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  95. Tümay SO, Şenocak A, Sarı E et al (2021) A new perspective for electrochemical determination of parathion and chlorantraniliprole pesticides via carbon nanotube-based thiophene-ferrocene appended hybrid nanosensor. Sens Actuators B Chem 345:130344. https://doi.org/10.1016/j.snb.2021.130344

    Article  CAS  Google Scholar 

  96. Qin Y, Liu J, Li D et al (2012) Biocompatible conductive architecture with surface-confined probe for non-invasive electrochemical cytosensing. Electrochem commun 18:81–84. https://doi.org/10.1016/j.elecom.2012.02.024

    Article  CAS  Google Scholar 

  97. Liu J, Qin Y, Li D et al (2013) Highly sensitive and selective detection of cancer cell with a label-free electrochemical cytosensor. Biosens Bioelectron 41:436–441. https://doi.org/10.1016/j.bios.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  98. Nkosi D, Pillay J, Ozoemena KI et al (2010) Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers. Phys Chem Chem Phys 12:604–613. https://doi.org/10.1039/b918754e

    Article  CAS  PubMed  Google Scholar 

  99. Mohammadi SZ, Beitollahi H, Dehghan Z, Hosseinzadeh R (2018) Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core-shell magnetic nanoparticles in aqueous media. Appl Organomet Chem 32:e4551. https://doi.org/10.1002/aoc.4551

    Article  CAS  Google Scholar 

  100. Kudur Jayaprakash G, Swamy BEK, Casillas N, Flores-Moreno R (2017) Analytical Fukui and cyclic voltammetric studies on ferrocene modified carbon electrodes and effect of Triton X-100 by immobilization method. Electrochim Acta 258:1025–1034. https://doi.org/10.1016/j.electacta.2017.11.154

    Article  CAS  Google Scholar 

  101. Raoof JB, Ojani R, Baghayeri M (2009) Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sens Actuators B Chem 143:261–269. https://doi.org/10.1016/j.snb.2009.08.046

    Article  CAS  Google Scholar 

  102. Beitollahi H, Ivari SG, Torkzadeh-Mahani M (2017) A double electrochemical platform for ultrasensitive and simultaneous determination of 6-mercaptopurine and folic acid based on a carbon paste electrode modified with zno-cuo nanoplates and 2-chlorobenzoyl ferrocene. ECS J Solid State Sci Technol 6:M29–M35. https://doi.org/10.1149/2.0201704jss

    Article  CAS  Google Scholar 

  103. Yang L, Huang N, Lu Q et al (2016) A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional Au NPs/carbon dots nanocomposite and graphene. Anal Chim Acta 903:69–80. https://doi.org/10.1016/j.aca.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  104. Wang J, Li J, Baca AJ et al (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945. https://doi.org/10.1021/ac0344079

    Article  CAS  PubMed  Google Scholar 

  105. Wang J, Zhu X, Tu Q et al (2008) Capture of p53 by electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocene-capped gold nanoparticle/streptavidin conjugates. Anal Chem 80:769–774. https://doi.org/10.1021/ac0714112

    Article  CAS  PubMed  Google Scholar 

  106. Chen M, Diao G (2009) Electrochemical study of mono-6-thio-β-cyclodextrin/ferrocene capped on gold nanoparticles: characterization and application to the design of glucose amperometric biosensor. Talanta 80:815–820. https://doi.org/10.1016/j.talanta.2009.07.068

    Article  CAS  PubMed  Google Scholar 

  107. Liu S, Zhou J, Li H et al (2016) Electrochemical signal tracing by glucose oxidase and ferrocene dually functionalized gold nanoprobe for ultrasensitive immunoassay. Electroanalysis 28:2993–2999. https://doi.org/10.1002/elan.201600188

    Article  CAS  Google Scholar 

  108. Zhan T, Feng XZ, An QQ et al (2022) Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC Adv 12:5072–5079. https://doi.org/10.1039/d1ra09213h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Briones M, Petit-Domínguez MD, Parra-Alfambra AM et al (2016) Electrocatalytic processes promoted by diamond nanoparticles in enzymatic biosensing devices. Bioelectrochemistry 111:93–99. https://doi.org/10.1016/j.bioelechem.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  110. Liu Q, Wang Y, Hu Z, Zhang Z (2021) Iron-based single-atom electrocatalysts: synthetic strategies and applications. RSC Adv 11:3079–3095. https://doi.org/10.1039/d0ra08223f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pan Y, Abazari R, Wu Y et al (2021) Advances in metal–organic frameworks and their derivatives for diverse electrocatalytic applications. Electrochem Commun 126:107024. https://doi.org/10.1016/j.elecom.2021.107024

    Article  CAS  Google Scholar 

  112. Xue Z, Liu K, Liu Q et al (2019) Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat Commun 10:1–8. https://doi.org/10.1038/s41467-019-13051-2

    Article  CAS  Google Scholar 

  113. Palmer RH, Liu J, Kung CW et al (2018) Electroactive ferrocene at or near the surface of metal-organic framework UiO-66. Langmuir 34:4707–4714. https://doi.org/10.1021/acs.langmuir.7b03846

    Article  CAS  PubMed  Google Scholar 

  114. Hod I, Bury W, Gardner DM et al (2015) Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal-organic framework compound. J Phys Chem Lett 6:586–591. https://doi.org/10.1021/acs.jpclett.5b00019

    Article  CAS  PubMed  Google Scholar 

  115. Deng Z, Yu H, Wang L et al (2019) Ferrocene-based metal-organic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst. J Mater Chem A Mater 7:15975–15980. https://doi.org/10.1039/c9ta03403j

    Article  CAS  Google Scholar 

  116. Wu Z, Wen J, Li J et al (2022) Ratiometric electrochemical detection of tryptophan based on ferrocene and carboxylated-pillar[6]arene hybrid metal-organic layers. Mater Adv 3:4342–4347. https://doi.org/10.1039/d2ma00125j

    Article  CAS  Google Scholar 

  117. Cao L, Wang C (2020) Metal-organic layers for electrocatalysis and photocatalysis. ACS Cent Sci 6:2149–2158. https://doi.org/10.1021/acscentsci.0c01150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao L, Wang T, Wang C (2018) Synthetic strategies for constructing two-dimensional metal-organic layers (MOLs): a tutorial review. Chin J Chem 36:754–764. https://doi.org/10.1002/cjoc.201800144

    Article  CAS  Google Scholar 

  119. Meenakshi S, Pandian K (2016) Simultaneous voltammetry detection of dopamine and uric acid in pharmaceutical products and urine samples using ferrocene carboxylic acid primed nanoclay modified glassy carbon electrode. J Electrochem Soc 163:B543–B555. https://doi.org/10.1149/2.0891610jes

    Article  CAS  Google Scholar 

  120. Pal P, Kundu MK, Malas A, Das CK (2014) Compatibilizing effect of halloysite nanotubes in polar-nonpolar hybrid system. J Appl Polym Sci 131:39587. https://doi.org/10.1002/app.39587

    Article  CAS  Google Scholar 

  121. Massaro M, Amorati R, Cavallaro G et al (2016) Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces 140:505–513. https://doi.org/10.1016/j.colsurfb.2016.01.025

    Article  CAS  PubMed  Google Scholar 

  122. Sun X, Zhang Y, Shen H, Jia N (2010) Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film. Electrochim Acta 56:700–705. https://doi.org/10.1016/j.electacta.2010.09.095

    Article  CAS  Google Scholar 

  123. Ma W, Wu H, Higaki Y, Takahara A (2018) Halloysite nanotubes: green nanomaterial for functional organic-inorganic nanohybrids. Chem Rec 18:986–999. https://doi.org/10.1002/tcr.201700093

    Article  CAS  PubMed  Google Scholar 

  124. Yang Y, Chen Y, Leng F et al (2017) Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Appl Sci 7:1215. https://doi.org/10.3390/app7121215

    Article  CAS  Google Scholar 

  125. Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859. https://doi.org/10.1021/ja210258y

    Article  CAS  PubMed  Google Scholar 

  126. Turrin C-O, Manoury E, Caminade A-M (2020) Ferrocenyl phosphorhydrazone dendrimers synthesis, and electrochemical and catalytic properties. Molecules 25:447. https://doi.org/10.3390/molecules25030447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Losada J, García-Armada P, Robles V et al (2011) Carbosilane based dendritic cores functionalized with interacting ferrocenyl units: Synthesis and electrocatalytical properties. New J Chem 35:2187–2195. https://doi.org/10.1039/c1nj20190e

    Article  CAS  Google Scholar 

  128. Villoslada R, Alonso B, Casado CM et al (2009) Anion receptor electrochemical sensing properties of poly(propyleneimine) dendrimers with ferrocenylamidoalkyl terminal groups. Organometallics 28:727–733. https://doi.org/10.1021/om8007019

    Article  CAS  Google Scholar 

  129. Losada J, García Armada MP, García E et al (2017) Electrochemical preparation of gold nanoparticles on ferrocenyl-dendrimer film modified electrodes and their application for the electrocatalytic oxidation and amperometric detection of nitrite. J Electroanal Chem 788:14–22. https://doi.org/10.1016/j.jelechem.2017.01.066

    Article  CAS  Google Scholar 

  130. Losada J, Cuadrado I, Morán M et al (1997) Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors. Anal Chim Acta 338:191–198. https://doi.org/10.1016/S0003-2670(96)00462-X

    Article  CAS  Google Scholar 

  131. García Armada MP, Losada J, Cuadrado I et al (2003) Electrodes modified with a siloxane copolymer containing interacting ferrocenes for determination of hydrogen peroxide and glucose. Sens Actuators B Chem 88:190–197. https://doi.org/10.1016/S0925-4005(02)00326-X

    Article  Google Scholar 

  132. Şenel M, Nergiz C, Çevik E (2013) Novel reagentless glucose biosensor based on ferrocene cored asymmetric PAMAM dendrimers. Sens Actuators B Chem 176:299–306. https://doi.org/10.1016/j.snb.2012.10.072

    Article  CAS  Google Scholar 

  133. Yan L, Yan X, Li H et al (2020) Reduced graphene oxide nanosheets and gold nanoparticles covalently linked to ferrocene-terminated dendrimer to construct electrochemical sensor with dual signal amplification strategy for ultra-sensitive detection of pesticide in vegetable. Microchem J 157:105016. https://doi.org/10.1016/j.microc.2020.105016

    Article  CAS  Google Scholar 

  134. Akgül E, Gülce A, Gülce H (2012) Electrocatalytic oxidation of methanol on poly(vinylferrocene) modified Pt electrode. J Electroanal Chem 668:73–82. https://doi.org/10.1016/j.jelechem.2012.01.009

    Article  CAS  Google Scholar 

  135. Ju H, Leech D (1997) Electrochemistry of poly(vinylferrocene) formed by direct electrochemical reduction at a glassy carbon electrode. J Chem Soc Faraday Trans 93:1371–1375. https://doi.org/10.1039/a606680a

    Article  CAS  Google Scholar 

  136. Tamura K, Akutagawa N, Satoh M et al (2008) Charge/discharge properties of organometallic batteries fabricated with ferrocene-containing polymers. Macromol Rapid Commun 29:1944–1949. https://doi.org/10.1002/marc.200800526

    Article  CAS  Google Scholar 

  137. Beladi-Mousavi SM, Sadaf S, Walder L et al (2016) Poly(vinylferrocene)-reduced graphene oxide as a high power/high capacity cathodic battery material. Adv Energy Mater 6:1600108. https://doi.org/10.1002/aenm.201600108

    Article  CAS  Google Scholar 

  138. Su X, Tan KJ, Elbert J et al (2017) Asymmetric Faradaic systems for selective electrochemical separations. Energy Environ Sci 10:1272–1283. https://doi.org/10.1039/c7ee00066a

    Article  CAS  Google Scholar 

  139. Tian W, Mao X, Brown P et al (2015) Electrochemically nanostructured polyvinylferrocene/polypyrrole hybrids with synergy for energy storage. Adv Funct Mater 25:4803–4813. https://doi.org/10.1002/adfm.201501041

    Article  CAS  Google Scholar 

  140. Jirimali HD, Nagarale RK, Lee JM et al (2011) Preparation of PEG tethered ferrocene modified polyacrylic acid/silica composite as an electroactive polymeric platform for biosensors. Electroanalysis 23:2109–2115. https://doi.org/10.1002/elan.201100192

    Article  CAS  Google Scholar 

  141. Escalona-Villalpando RA, Reid RC, Milton RD et al (2017) Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J Power Sources 342:546–552. https://doi.org/10.1016/j.jpowsour.2016.12.082

    Article  CAS  Google Scholar 

  142. Milton RD, Lim K, Hickey DP, Minteer SD (2015) Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum. Bioelectrochemistry 106:56–63. https://doi.org/10.1016/j.bioelechem.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  143. Dilusha Cooray MC, Sandanayake S, Li F et al (2016) Efficient enzymatic oxidation of glucose mediated by ferrocene covalently attached to polyethylenimine stabilized gold nanoparticles. Electroanalysis 28:2728–2736. https://doi.org/10.1002/elan.201600201

    Article  CAS  Google Scholar 

  144. Takahashi S, Anzai JI (2013) Recent progress in ferrocene-modified thin films and nanoparticles for biosensors. Materials 6:5742–5762. https://doi.org/10.3390/ma6125742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hiratsuka A, Kojima KI, Muguruma H et al (2005) Electron transfer mediator micro-biosensor fabrication by organic plasma process. Biosens Bioelectron 21:957–964. https://doi.org/10.1016/j.bios.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  146. Bean LS, Heng LY, Yamin BM, Ahmad M (2005) Photocurable ferrocene-containing poly(2-hydroxyl ethyl methacrylate) films for mediated amperometric glucose biosensor. Thin Solid Films. Elsevier, pp 104–110. https://doi.org/10.1016/j.tsf.2004.08.156

    Chapter  Google Scholar 

  147. Lawal AT, Adeloju SB (2012) Mediated xanthine oxidase potentiometric biosensors for hypoxanthine based on ferrocene carboxylic acid modified electrode. Food Chem 135:2982–2987. https://doi.org/10.1016/j.foodchem.2012.07.052

    Article  CAS  PubMed  Google Scholar 

  148. Lv X, Huang C, Tameev A et al (2019) Electrochemical polymerization process and excellent electrochromic properties of ferrocene-functionalized polytriphenylamine derivative. Dyes Pigm 163:433–440. https://doi.org/10.1016/j.dyepig.2018.12.019

    Article  CAS  Google Scholar 

  149. Luo Q, Zhang R, Zhang J, Xia J (2019) Synthesis of conjugated main-chain ferrocene-containing polymers through melt-state polymerization. Organometallics 38:2972–2978. https://doi.org/10.1021/acs.organomet.9b00312

    Article  CAS  Google Scholar 

  150. Teimuri-Mofrad R, Abbasi H, Hadi R (2019) Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material. Polymer (Guildf) 167:138–145. https://doi.org/10.1016/j.polymer.2019.01.084

    Article  CAS  Google Scholar 

  151. Kanyong P, Rawlinson S, Davis J (2016) A non-enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk. J Electroanal Chem 766:147–151. https://doi.org/10.1016/j.jelechem.2016.02.006

    Article  CAS  Google Scholar 

  152. Ospina E, Armada MPG, Losada J et al (2016) Polyferrocenyl polycyclosiloxane/gold nanoparticles: an efficient electrocatalytic platform for immobilization and direct electrochemistry of HRP. J Electrochem Soc 163:H826–H833. https://doi.org/10.1149/2.1141609jes

    Article  CAS  Google Scholar 

  153. Wang X, Li Q, Xu J et al (2016) Rational design of bioelectrochemically multifunctional film with oxidase, ferrocene, and graphene oxide for development of in vivo electrochemical biosensors. Anal Chem 88:5885–5891. https://doi.org/10.1021/acs.analchem.6b00720

    Article  CAS  PubMed  Google Scholar 

  154. Ghosh SK, Rahaman H (2018) Noble metal-manganese oxide hybrid nanocatalysts. Noble metal-metal oxide hybrid nanoparticles: fundamentals and applications. Elsevier, pp 313–340. https://doi.org/10.1016/B978-0-12-814134-2.00009-7

    Chapter  Google Scholar 

  155. Li W, Xiong D, Gao X, Liu L (2019) The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem Commun 55:8744–8763. https://doi.org/10.1039/c9cc02845e

    Article  CAS  Google Scholar 

  156. Suen NT, Hung SF, Quan Q et al (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365. https://doi.org/10.1039/c6cs00328a

    Article  CAS  PubMed  Google Scholar 

  157. Thangasamy P, Oh S, Nam S et al (2020) Ferrocene-incorporated cobalt sulfide nanoarchitecture for superior oxygen evolution reaction. Small 16:2001665. https://doi.org/10.1002/smll.202001665

    Article  CAS  Google Scholar 

  158. Thangasamy P, Nam S, Oh S et al (2021) Boosting oxygen evolution reaction on metallocene-based transition metal sulfides integrated with N-doped carbon nanostructures. Chemsuschem 14:5004–5020. https://doi.org/10.1002/cssc.202101469

    Article  CAS  PubMed  Google Scholar 

  159. Liu Y, Li B, Liu Y et al (2022) Sheet-like units of ferrocene-based coordination compounds for oxygen evolution. Colloids Surf A Physicochem Eng Asp 654:130070. https://doi.org/10.1016/j.colsurfa.2022.130070

    Article  CAS  Google Scholar 

  160. Tavakkoli M, Kallio T, Reynaud O et al (2016) Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. J Mater Chem A Mater 4:5216–5222. https://doi.org/10.1039/c6ta01472k

    Article  CAS  Google Scholar 

  161. Gao T, Zhou C, Zhang Y et al (2018) Ultra-fast pyrolysis of ferrocene to form Fe/C heterostructures as robust oxygen evolution electrocatalysts. J Mater Chem A Mater 6:21577–21584. https://doi.org/10.1039/C8TA05733H

    Article  CAS  Google Scholar 

  162. Ojha K, Saha S, Dagar P, Ganguli AK (2018) Nanocatalysts for hydrogen evolution reactions. Phys Chem Chem Phys 20:6777–6799. https://doi.org/10.1039/c7cp06316d

    Article  CAS  PubMed  Google Scholar 

  163. Shekurov R, Khrizanforova V, Gilmanova L et al (2019) Zn and Co redox active coordination polymers as efficient electrocatalysts. Dalton Trans 48:3601–3609. https://doi.org/10.1039/C8DT04618B

    Article  CAS  PubMed  Google Scholar 

  164. Khrizanforova V, Shekurov R, Miluykov V et al (2020) 3D Ni and Co redox-active metal-organic frameworks based on ferrocenyl diphosphinate and 4,4′-bipyridine ligands as efficient electrocatalysts for the hydrogen evolution reaction. Dalton Trans 49:2794–2802. https://doi.org/10.1039/c9dt04834k

    Article  CAS  PubMed  Google Scholar 

  165. Kumar Padhi S, Ahmad E, Rai S, Panda B (2020) Kinetics and mechanistic study of electrocatalytic hydrogen evolution by [Co(Fc-tpy)2]2+. Polyhedron 187:114677. https://doi.org/10.1016/j.poly.2020.114677

    Article  CAS  Google Scholar 

  166. Pan Z-H, Tao Y-W, He Q-F et al (2018) The difference Se makes: a bio-inspired Dppf-supported nickel selenolate complex boosts dihydrogen evolution with high oxygen tolerance. Chem Eur J 24:8275–8280. https://doi.org/10.1002/chem.201801893

    Article  CAS  PubMed  Google Scholar 

  167. Sirbu D, Turta C, Gibson EA, Benniston AC (2015) The ferrocene effect: enhanced electrocatalytic hydrogen production using meso-tetraferrocenyl porphyrin palladium(II) and copper(II) complexes. Dalton Trans 44:14646–14655. https://doi.org/10.1039/c5dt02191j

    Article  CAS  PubMed  Google Scholar 

  168. Zhou J, Wang F, Wang H et al (2022) Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. https://doi.org/10.1007/s12274-022-4901-6

    Article  PubMed  PubMed Central  Google Scholar 

  169. Khan A, Gunawan CA, Zhao C (2017) Oxygen reduction reaction in ionic liquids: fundamentals and applications in energy and sensors. ACS Sustain Chem Eng 5:3698–3715. https://doi.org/10.1021/acssuschemeng.7b00388

    Article  CAS  Google Scholar 

  170. Si F, Zhang Y, Yan L et al (2014) Electrochemical oxygen reduction reaction. Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier B.V., pp 133–170. https://doi.org/10.1016/B978-0-444-63278-4.00004-5

    Chapter  Google Scholar 

  171. Sun B, Ou Z, Meng D et al (2014) Electrochemistry and catalytic properties for dioxygen reduction using ferrocene-substituted cobalt porphyrins. Inorg Chem 53:8600–8609. https://doi.org/10.1021/ic501210t

    Article  CAS  PubMed  Google Scholar 

  172. Mondol P, Barile CJ (2021) Four-electron electrocatalytic O2 reduction by a ferrocene-modified glutathione complex of Cu. ACS Appl Energy Mater 4:9611–9617. https://doi.org/10.1021/acsaem.1c01753

    Article  CAS  Google Scholar 

  173. Carver CT, Matson BD, Mayer JM (2012) Electrocatalytic oxygen reduction by iron tetra-arylporphyrins bearing pendant proton relays. J Am Chem Soc 134:5444–5447. https://doi.org/10.1021/ja211987f

    Article  CAS  PubMed  Google Scholar 

  174. Fukuzumi S, Nam W, Lu X et al (2020) Catalytic four-electron reduction of dioxygen by ferrocene derivatives with a nonheme iron(III) TAML complex. Inorg Chem 59:18010–18017. https://doi.org/10.1021/acs.inorgchem.0c02400

    Article  CAS  PubMed  Google Scholar 

  175. Jung J, Liu S, Ohkubo K et al (2015) Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles. Inorg Chem 54:4285–4291. https://doi.org/10.1021/ic503012s

    Article  CAS  PubMed  Google Scholar 

  176. Fukuzumi S, Okamoto K, Gros CP, Guilard R (2004) Mechanism of four-electron reduction of dioxygen to water by ferrocene derivatives in the presence of perchloric acid in benzonitrile, catalyzed by cofacial dicobalt porphyrins. J Am Chem Soc 126:10441–10449. https://doi.org/10.1021/ja048403c

    Article  CAS  PubMed  Google Scholar 

  177. Premkumar V, Chandrasekaran N, Madasamy K et al (2018) Iron oxide decorated N-doped carbon derived from poly(ferrocene-urethane) interconnects for the oxygen reduction reaction. New J Chem 42:15629–15638. https://doi.org/10.1039/C8NJ02529K

    Article  CAS  Google Scholar 

  178. Liu X, Liang X, Lou H et al (2021) Ferrocene-based porous organic polymer derived N-doped porous carbon/Fe3C nanocrystal hybrids towards high-efficiency ORR for Zn-air batteries. Sustain Energy Fuels 5:1067–1074. https://doi.org/10.1039/d0se01692f

    Article  CAS  Google Scholar 

  179. Hu E, Yu X-Y, Chen F et al (2018) Graphene layers-wrapped Fe/Fe 5 C 2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction. Adv Energy Mater 8:1702476. https://doi.org/10.1002/aenm.201702476

    Article  CAS  Google Scholar 

  180. Wang J, Han G, Wang L et al (2018) ZIF-8 with ferrocene encapsulated: a promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 14:1704282. https://doi.org/10.1002/smll.201704282

    Article  CAS  Google Scholar 

  181. Li L, Wen Y, Han G et al (2022) Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. Chem Eng J 437:135320. https://doi.org/10.1016/j.cej.2022.135320

    Article  CAS  Google Scholar 

  182. Xie W, Deng W, Hu J et al (2022) Construction of ferrocene-based bimetallic CoFe-FcDA nanosheets for efficient oxygen evolution reaction. Mol Catal 528:112502. https://doi.org/10.1016/j.mcat.2022.112502

    Article  CAS  Google Scholar 

  183. Cai G, Zeng L, He L et al (2020) Imine gels based on ferrocene and porphyrin and their electrocatalytic property. Chem Asian J 15:1963–1969. https://doi.org/10.1002/asia.202000083

    Article  CAS  PubMed  Google Scholar 

  184. Zeng Z, Yi L, He J et al (2020) Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions. J Mater Sci 55:4780–4791. https://doi.org/10.1007/S10853-019-04327-5

    Article  CAS  Google Scholar 

  185. Jiang J, Wang C, Zhang J et al (2014) Synthesis of FeP2/C nanohybrids and their performance for hydrogen evolution reaction. J Mater Chem A Mater 3:499–503. https://doi.org/10.1039/C4TA04758C

    Article  CAS  Google Scholar 

  186. Zhang S, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5:1401401. https://doi.org/10.1002/aenm.201401401

    Article  CAS  Google Scholar 

  187. Wang DW, Zeng Q, Zhou G et al (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A Mater 1:9382–9394. https://doi.org/10.1039/c3ta11045a

    Article  CAS  Google Scholar 

  188. Wang Y, Deng Z, Huang J et al (2021) 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Storage Mater 36:466–477. https://doi.org/10.1016/j.ensm.2021.01.025

    Article  Google Scholar 

  189. Mi Y, Liu W, Yang KR et al (2016) Ferrocene-promoted long-cycle lithium-sulfur batteries. Angew Chem Int Ed 55:14818–14822. https://doi.org/10.1002/anie.201609147

    Article  CAS  Google Scholar 

  190. Dong Q, Wang T, Su D et al (2023) Anchoring and boosting: ferrocene-based separators used to eliminate the polysulfide shuttle effect for Li–S batteries. J Memb Sci 678:121660. https://doi.org/10.1016/j.memsci.2023.121660

    Article  CAS  Google Scholar 

  191. Yin WW, Yue JL, Cao MH et al (2015) Dual catalytic behavior of a soluble ferrocene as an electrocatalyst and in the electrochemistry for Na-air batteries. J Mater Chem A Mater 3:19027–19032. https://doi.org/10.1039/c5ta04647e

    Article  CAS  Google Scholar 

  192. Chola NM, Singh V, Verma V, Nagarale RK (2022) Green synthesis and thermal encapsulation of organic cathode for aqueous Zn battery. J Electrochem Soc 169:020503. https://doi.org/10.1149/1945-7111/ac4b85

    Article  CAS  Google Scholar 

  193. Liu X, Hao M, Feng M et al (2013) A one-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator. Appl Energy 106:176–183. https://doi.org/10.1016/j.apenergy.2013.01.073

    Article  CAS  Google Scholar 

  194. Haddad R, Mattei JG, Thery J, Auger A (2015) Novel ferrocene-anchored ZnO nanoparticle/carbon nanotube assembly for glucose oxidase wiring: application to a glucose/air fuel cell. Nanoscale 7:10641–10647. https://doi.org/10.1039/c5nr00497g

    Article  CAS  PubMed  Google Scholar 

  195. Bahar T, Yazici MS (2018) Immobilized glucose oxidase biofuel cell anode by MWCNTs, ferrocene, and polyethylenimine: electrochemical performance. Asia-Pac J Chem Eng 13:e2149. https://doi.org/10.1002/apj.2149

    Article  CAS  Google Scholar 

  196. Bahar T (2016) Preparation of a ferrocene mediated bioanode for biofuel cells by MWCNTs, polyethylenimine and glutaraldehyde: glucose oxidase immobilization and characterization. Asia-Pac J Chem Eng 11:981–988. https://doi.org/10.1002/apj.2032

    Article  CAS  Google Scholar 

  197. Sokic-Lazic D, de Andrade AR, Minteer SD (2011) Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell. Electrochim Acta 56:10772–10775. https://doi.org/10.1016/j.electacta.2011.01.050

    Article  CAS  Google Scholar 

  198. Hickey DP, Reid RC, Milton RD, Minteer SD (2016) A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens Bioelectron 77:26–31. https://doi.org/10.1016/j.bios.2015.09.013

    Article  CAS  PubMed  Google Scholar 

  199. Wang Y, Chen KS, Mishler J et al (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  CAS  Google Scholar 

  200. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832. https://doi.org/10.1021/cr200035s

    Article  CAS  PubMed  Google Scholar 

  201. Wang QX, Guo ZC, Qin Y et al (2021) High proton conduction in three highly water-stable hydrogen-bonded ferrocene-based phenyl carboxylate frameworks. Inorg Chem 60:19278–19286. https://doi.org/10.1021/acs.inorgchem.1c03093

    Article  CAS  PubMed  Google Scholar 

  202. Kirchhofer ND, Rengert ZD, Dahlquist FW et al (2017) A ferrocene-based conjugated oligoelectrolyte catalyzes bacterial electrode respiration. Chem 2:240–257. https://doi.org/10.1016/j.chempr.2017.01.001

    Article  CAS  Google Scholar 

  203. McCuskey SR, Rengert ZD, Zhang M et al (2019) Tuning the potential of electron extraction from microbes with ferrocene-containing conjugated oligoelectrolytes. Adv Biosyst 3:1800303. https://doi.org/10.1002/adbi.201800303

    Article  CAS  Google Scholar 

  204. Boroujeni MR, Greene C, Bertke JA, Warren TH (2019) Chemical and electrocatalytic ammonia oxidation by ferrocene. ChemRxiv. https://doi.org/10.26434/CHEMRXIV.9729635.V1

    Article  Google Scholar 

  205. Zhong C, Deng Y, Hu W et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. https://doi.org/10.1039/c5cs00303b

    Article  CAS  PubMed  Google Scholar 

  206. Miao Q, Rouhani F, Moghanni-Bavil-Olyaei H et al (2020) Comparative study of the supercapacitive performance of three ferrocene-based structures: targeted design of a conductive ferrocene-functionalized coordination polymer as a supercapacitor electrode. Chem A Eur J 26:9518–9526. https://doi.org/10.1002/chem.202001109

    Article  CAS  Google Scholar 

  207. Chauhan NPS, Jadoun S, Rathore BS et al (2021) Redox polymers for capacitive energy storage applications. J Energy Storage 43:103218. https://doi.org/10.1016/j.est.2021.103218

    Article  Google Scholar 

  208. de Adhikari A, Oraon R, Tiwari SK et al (2017) Polyaniline-stabilized intertwined network-like ferrocene/graphene nanoarchitecture for supercapacitor application. Chem Asian J 12:900–909. https://doi.org/10.1002/asia.201700124

    Article  CAS  PubMed  Google Scholar 

  209. Rajak R, Saraf M, Mohammad A, Mobin SM (2017) Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications. J Mater Chem A Mater 5:17998–18011. https://doi.org/10.1039/c7ta03773b

    Article  CAS  Google Scholar 

  210. Li Y, Zheng Y (2017) Preparation of a P(FcA-co-ANI)/graphene composite for application in supercapacitors. High Perform Polym 29:524–532. https://doi.org/10.1177/0954008316652463

    Article  CAS  Google Scholar 

  211. Knoche KL, Hickey DP, Milton RD et al (2016) Hybrid glucose/O2 biobattery and supercapacitor utilizing a pseudocapacitive dimethylferrocene redox polymer at the bioanode. ACS Energy Lett 1:380–385. https://doi.org/10.1021/acsenergylett.6b00225

    Article  CAS  Google Scholar 

  212. Lei P, Zhou Y, Zhao S et al (2022) Carbon-supported X-manganate (X[dbnd]Ni, Zn, and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions. J Hazard Mater 435:129036. https://doi.org/10.1016/j.jhazmat.2022.129036

    Article  CAS  PubMed  Google Scholar 

  213. Rizwan K, Rahdar A, Bilal M, Iqbal HMN (2022) MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. Chemosphere 291:132820. https://doi.org/10.1016/j.chemosphere.2021.132820

    Article  CAS  PubMed  Google Scholar 

  214. Wang H, Xu Y, Xu D et al (2022) Graphitic carbon nitride for photoelectrochemical detection of environmental pollutants. ACS ES&T Eng 2:140–157. https://doi.org/10.1021/acsestengg.1c00337

    Article  CAS  Google Scholar 

  215. Kaur S, Shalini AS, B, et al (2022) Triazole-tethered naphthalimide-ferrocenyl-chalcone based voltammetric and potentiometric sensors for selective electrochemical quantification of Copper(II) ions. J Electroanal Chem 905:115966. https://doi.org/10.1016/j.jelechem.2021.115966

    Article  CAS  Google Scholar 

  216. Chang A, Sandhu SS, Fernando PUAI et al (2023) Electrochemically induced conformational change of Di-boronic acid-functionalized ferrocene for direct solid-state monitoring of aqueous fluoride ions. Adv Funct Mater. https://doi.org/10.1002/adfm.202303968

    Article  Google Scholar 

  217. Singh M, Bhardiya SR, Asati A et al (2021) Design of a sensitive electrochemical sensor based on ferrocene-reduced graphene oxide/Mn-spinel for hydrazine detection. Electroanalysis 33:464–472. https://doi.org/10.1002/elan.202060345

    Article  CAS  Google Scholar 

  218. Tajik S, Beitollahi H, Hosseinzadeh R et al (2021) Electrochemical detection of hydrazine by carbon paste electrode modified with ferrocene derivatives, ionic liquid, and CoS2-carbon nanotube nanocomposite. ACS Omega 6:4641–4648. https://doi.org/10.1021/acsomega.0c05306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ren X, Jiao X, Wang Y et al (2022) A sensitive aflatoxin B1 electrochemical aptasensor based on ferrocene-functionalized hollow porous carbon spheres as signal amplifier. Microchem J 181:107649. https://doi.org/10.1016/j.microc.2022.107649

    Article  CAS  Google Scholar 

  220. Jiao Y, Jia H, Guo Y et al (2016) An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes. RSC Adv 6:58541–58548. https://doi.org/10.1039/c6ra07735h

    Article  CAS  Google Scholar 

  221. Qu C, Lv X, Wang R et al (2023) Controllable synthesis of FeMn bimetallic ferrocene-based metal–organic frameworks to boost the catalytic efficiency for removal of organic pollutants. Environ Sci Pollut Res 30:17449–17458. https://doi.org/10.1007/s11356-022-23315-y

    Article  CAS  Google Scholar 

  222. Wang W, He Y, Gao Y et al (2022) A peptide aptamer based electrochemical amperometric sensor for sensitive L-glutamate detection. Bioelectrochemistry 146:108165. https://doi.org/10.1016/j.bioelechem.2022.108165

    Article  CAS  PubMed  Google Scholar 

  223. Tseng TTC, Chen PWH, Chang LHY (2015) Fabrication of ferrocene modified microsensors for the sensitive detection of glutamate. 2015 IEEE sensors - Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICSENS.2015.7370588

    Chapter  Google Scholar 

  224. Beitollahi H, Ganjali MR, Norouzi P et al (2020) A novel electrochemical sensor based on graphene nanosheets and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate for electrocatalytic oxidation of cysteine and tyrosine. Measurement (Lond) 152:107302. https://doi.org/10.1016/j.measurement.2019.107302

    Article  Google Scholar 

  225. Mohammadnavaz A, Beitollahi H, Modiri S (2023) Electro-catalytic determination of L-cystezine using multi walled carbon nanotubes-Co3O4 nanocomposite/benzoylferrocene/ionic liquid modified carbon paste electrode. Inorg Chim Acta 548:121340. https://doi.org/10.1016/j.ica.2022.121340

    Article  CAS  Google Scholar 

  226. Wu B, Yeasmin S, Liu Y, Cheng LJ (2022) Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes. Sens Actuators B Chem 354:131216. https://doi.org/10.1016/j.snb.2021.131216

    Article  CAS  Google Scholar 

  227. Widyaningrum BA, Widianti N, Harsini M, Purwaningsih A (2020) Selective voltammetric detection of dopamine using ferrocene modified carbon paste electrode. IOP conference series: earth and environmental science. IOP Publishing Ltd, p 012037. https://doi.org/10.1088/1755-1315/572/1/012037

    Chapter  Google Scholar 

  228. Devendiran M, Krishna Kumar K, Sriman Narayanan S (2017) Fabrication of a novel ferrocene/thionin bimediator modified electrode for the electrochemical determination of dopamine and hydrogen peroxide. J Electroanal Chem 802:78–88. https://doi.org/10.1016/j.jelechem.2017.08.016

    Article  CAS  Google Scholar 

  229. Atta NF, Galal A, Ali SM, Hassan SH (2015) Electrochemistry and detection of dopamine at a poly(3,4-ethylenedioxythiophene) electrode modified with ferrocene and cobaltocene. Ionics (Kiel) 21:2371–2382. https://doi.org/10.1007/s11581-015-1417-z

    Article  CAS  Google Scholar 

  230. Jafarei S, Asadollahzadeh H, Rastakhiz N et al (2022) New strategy for selective voltammetric determination of norepinephrine using modified electrode by using benzoyl ferrocene and manganese ferrite nanoparticles. J Mater Sci Mater Electron 33:11813–11824. https://doi.org/10.1007/s10854-022-08145-5

    Article  CAS  Google Scholar 

  231. Zhu D, Ma H, Zhen Q et al (2020) Hierarchical flower-like zinc oxide nanosheets in-situ growth on three-dimensional ferrocene-functionalized graphene framework for sensitive determination of epinephrine and its oxidation derivative. Appl Surf Sci 526:146721. https://doi.org/10.1016/j.apsusc.2020.146721

    Article  CAS  Google Scholar 

  232. Mohammadi SZ, Beitollahi H, Khodaparast B, Hosseinzadeh R (2019) Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core–shell magnetic nanoparticles. Res Chem Intermed 45:1117–1129. https://doi.org/10.1007/s11164-018-3668-6

    Article  CAS  Google Scholar 

  233. Gopalan AI, Muthuchamy N, Komathi S, Lee KP (2016) A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens Bioelectron 84:53–63. https://doi.org/10.1016/j.bios.2015.10.079

    Article  CAS  PubMed  Google Scholar 

  234. Estrada-Osorio DV, Escalona-Villalpando RA, Gutiérrez A et al (2022) Poly-L-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application. Bioelectrochemistry 146:108147. https://doi.org/10.1016/j.bioelechem.2022.108147

    Article  CAS  PubMed  Google Scholar 

  235. Saadaoui M, Braiek M, Jaffrezic-Renault N, Raouafi N (2016) An ultrasensitive nanobiohybrid platform for glucose electrochemical biosensing based on ferrocenyl iminopropyl-modified silica nanoparticles. RSC Adv 6:46238–46243. https://doi.org/10.1039/c6ra03779h

    Article  CAS  Google Scholar 

  236. Song Z, Song J, Gao F et al (2022) Novel electroactive ferrocene-based covalent organic frameworks towards electrochemical label-free aptasensors for the detection of cardiac troponin I. Sens Actuators B Chem 368:132205. https://doi.org/10.1016/j.snb.2022.132205

    Article  CAS  Google Scholar 

  237. Chen Y, Wang XY, Wang AJ et al (2021) Ultrasensitive ratiometric electrochemical immunoassay of N-terminal pro-B-type natriuretic peptide based on three-dimensional PtCoNi hollow multi-branches/ferrocene-grafted-ionic liquid and Co[sbnd]N[sbnd]C nanosheets. Sens Actuators B Chem 326:128794. https://doi.org/10.1016/j.snb.2020.128794

    Article  CAS  Google Scholar 

  238. Li G, Zeng J, Zhao L et al (2019) Amperometric cholesterol biosensor based on reduction graphene oxide-chitosan-ferrocene/platinum nanoparticles modified screen-printed electrode. J Nanopart Res 21:1–16. https://doi.org/10.1007/s11051-019-4602-6

    Article  CAS  Google Scholar 

  239. Huang X, Miao J, Fang J et al (2022) Ratiometric electrochemical immunosensor based on L-cysteine grafted ferrocene for detection of neuron specific enolase. Talanta 239:123075. https://doi.org/10.1016/j.talanta.2021.123075

    Article  CAS  PubMed  Google Scholar 

  240. Yu X, Li Y, Li Y et al (2022) An electrochemical amplification strategy based on the ferrocene functionalized cuprous oxide superparticles for the detection of NSE. Talanta 236:122865. https://doi.org/10.1016/j.talanta.2021.122865

    Article  CAS  PubMed  Google Scholar 

  241. Mars A, Ben Jaafar S, el Gaied ABA, Raouafi N (2018) Electrochemical immunoassay for lactalbumin based on the use of ferrocene-modified gold nanoparticles and lysozyme-modified magnetic beads. Microchim Acta 185:1–8. https://doi.org/10.1007/s00604-018-2986-0

    Article  CAS  Google Scholar 

  242. Wang AJ, Zhu XY, Chen Y et al (2019) Ultrasensitive label-free electrochemical immunoassay of carbohydrate antigen 15–3 using dendritic Au@Pt nanocrystals/ferrocene-grafted-chitosan for efficient signal amplification. Sens Actuators B Chem 292:164–170. https://doi.org/10.1016/j.snb.2019.04.128

    Article  CAS  Google Scholar 

  243. Khumngern S, Thavarungkul P, Kanatharana P et al (2022) Molecularly imprinted electrochemical sensor based on poly(o-phenylenediamine-co-o-aminophenol) incorporated with poly(styrenesulfonate) doped poly(3,4-ethylenedioxythiophene) ferrocene composite modified screen-printed carbon electrode for highly sensitive and selective detection of prostate cancer biomarker. Microchem J 177:107311. https://doi.org/10.1016/j.microc.2022.107311

    Article  CAS  Google Scholar 

  244. Li W, Ma Z (2017) Conductive catalytic redox hydrogel composed of aniline and vinyl-ferrocene for ultrasensitive detection of prostate specific antigen. Sens Actuators B Chem 248:545–550. https://doi.org/10.1016/j.snb.2017.04.021

    Article  CAS  Google Scholar 

  245. Cheng H, Xu L, Zhang H et al (2016) Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker. Analyst 141:4381–4387. https://doi.org/10.1039/c6an00651e

    Article  CAS  PubMed  Google Scholar 

  246. Song Y, Li W, Ma C et al (2020) The synergistic effect of ferrocene and Cu 2 O to construct a sandwich-type multi-signal amplification ultra-sensitive immunosensor for carcinoembryonic antigen detection. J Electrochem Soc 167:027538. https://doi.org/10.1149/1945-7111/ab6c53

    Article  CAS  Google Scholar 

  247. Feng T, Qiao X, Wang H et al (2016) A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels. Biosens Bioelectron 79:48–54. https://doi.org/10.1016/j.bios.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  248. Liang J, Guo F, Huang J et al (2023) An ultrasensitive label-free electrochemical aptasensing platform for Golgi protein-73 detection based on RGO-Fc-Mn3O4 nanocomposites. Microchem J 193:109138. https://doi.org/10.1016/j.microc.2023.109138

    Article  CAS  Google Scholar 

  249. Wu B, Yeasmin S, Liu Y, Cheng LJ (2022) Ferrocene-grafted carbon nanotubes for sensitive non-enzymatic electrochemical detection of hydrogen peroxide. J Electroanal Chem 908:116101. https://doi.org/10.1016/j.jelechem.2022.116101

    Article  CAS  Google Scholar 

  250. Dervisevic E, Dervisevic M, Nyangwebah JN, Şenel M (2017) Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sens Actuators B Chem 246:920–926. https://doi.org/10.1016/j.snb.2017.02.122

    Article  CAS  Google Scholar 

  251. Dervisevic M, Dervisevic E, Senel M et al (2017) Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzyme Microb Technol 102:53–59. https://doi.org/10.1016/j.enzmictec.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  252. Manusha P, Senthilkumar S (2022) Development of a ferrocene-tethered ionic liquid modified electrode for non-enzymatic electrochemical sensing of NADH. J Mater Sci Mater Electron 33:8576–8585. https://doi.org/10.1007/s10854-021-06576-0

    Article  CAS  Google Scholar 

  253. Zhang X, Shen Y, Zhang Y et al (2017) A label-free electrochemical immunosensor based on a new polymer containing aldehyde and ferrocene groups. Talanta 164:483–489. https://doi.org/10.1016/j.talanta.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  254. Wang W, Xiao S, Jia Z et al (2022) A dual-mode aptasensor for foodborne pathogens detection using Pt, phenylboric acid and ferrocene modified Ti3C2 MXenes nanoprobe. Sens Actuators B Chem 351:130839. https://doi.org/10.1016/j.snb.2021.130839

    Article  CAS  Google Scholar 

  255. Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396:339–364. https://doi.org/10.1007/s00216-009-3076-2

    Article  CAS  PubMed  Google Scholar 

  256. Shaw L, Dennany L (2017) Applications of electrochemical sensors: forensic drug analysis. Curr Opin Electrochem 3:23–28. https://doi.org/10.1016/j.coelec.2017.05.001

    Article  CAS  Google Scholar 

  257. Yang M, Sun Z, Jin H, Gui R (2022) Sulfur nanoparticle-encapsulated MOF and boron nanosheet-ferrocene complex modified electrode platform for ratiometric electrochemical sensing of adriamycin and real-time monitoring of drug release. Microchem J 177:107319. https://doi.org/10.1016/j.microc.2022.107319

    Article  CAS  Google Scholar 

  258. Han H, Liu C, Sha J et al (2021) Ferrocene-reduced graphene oxide-polyoxometalates based ternary nanocomposites as electrochemical detection for acetaminophen. Talanta 235:122751. https://doi.org/10.1016/j.talanta.2021.122751

    Article  CAS  PubMed  Google Scholar 

  259. Changsan N, Chairam S, Jarujamrus P, Amatatongchai M (2022) Sensitive electrochemical sensor based on gold nanoparticles assembled ferrocene-functionalised graphene oxide modified glassy carbon electrode for simultaneous determination of dopamine and acetaminophen. Adv Nat Sci Nanosci Nanotechnol 13:015012. https://doi.org/10.1088/2043-6262/ac5d44

    Article  Google Scholar 

  260. Movlaee K, Beitollahi H, Ganjali MR, Norouzi P (2017) Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Microchim Acta 184:3281–3289. https://doi.org/10.1007/s00604-017-2291-3

    Article  CAS  Google Scholar 

  261. Guo H, Wang Z, Yang W et al (2020) A facile ratiometric electrochemical sensor for sensitive 4-acetamidophenol determination based on ferrocene-graphene oxide-Nafion modified electrode. Anal Methods 12:1353–1359. https://doi.org/10.1039/d0ay00028k

    Article  CAS  Google Scholar 

  262. Pourtaheri E, Taher MA, Beitollahi H, Hosseinzadeh R (2019) Analysis of methyldopa in the presence of phenylephrine using electrocatalytic effect of a ferrocene derivative at a surface of feather like La 3+/ZnO nano-flowers modified carbon paste electrode. Appl Organomet Chem 33:e4736. https://doi.org/10.1002/aoc.4736

    Article  CAS  Google Scholar 

  263. Baghbanpoor P, Shishehbore MR, Beitollahi H, Sheibani A (2022) The application of ferrocene derivative and CeO–ZnO nanocomposite-modified carbon paste electrode for simultaneous detection of penicillamine and tryptophan. Russ J Electrochem 58:235–247. https://doi.org/10.1134/S1023193522040048

    Article  Google Scholar 

  264. Beitollahi H, Gholami A, Ganjali MR (2018) First Report for determination of d-penicillamine in the presence of tryptophan using a 2-chlorobenzoyl ferrocene/Ag-supported ZnO nanoplate-modified carbon paste electrode. J AOAC Int 101:208–215. https://doi.org/10.5740/jaoacint.16-0361

    Article  CAS  PubMed  Google Scholar 

  265. Rahimpour S, Zarenezhad H, Teimuri-Mofrad R (2023) Folic acid electrocatalytic oxidation on the carbon electrode surface modified with ferrocenyl grafted polymethylhydrosiloxane. Appl Organomet Chem. https://doi.org/10.1002/aoc.7200

    Article  Google Scholar 

  266. Chu M, Wang Y, Xin J et al (2023) In situ growth of CoFe-prussian blue analog nanospheres on ferrocene-functionalized ultrathin layered Ti3C2Tx MXene frameworks for efficient detection of xanthine. Chem Eng J 469:143866. https://doi.org/10.1016/j.cej.2023.143866

    Article  CAS  Google Scholar 

  267. Karimi-Maleh H, Ahanjan K, Taghavi M, Ghaemy M (2016) A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal Methods 8:1780–1788. https://doi.org/10.1039/c5ay03284a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the CHRIST (Deemed to be University) management for supporting our research throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Varghese.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sariga, Varghese, A. The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications. Top Curr Chem (Z) 381, 32 (2023). https://doi.org/10.1007/s41061-023-00441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-023-00441-w

Keywords

Navigation