Skip to main content
Log in

New strategy for selective voltammetric determination of norepinephrine using modified electrode by using benzoyl ferrocene and manganese ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Norepinephrine (NE) is one of the most important catecholamine neurotransmitters in the central nervous system and play an important role in health and diseases. Therefore, the determination of NE in biological samples is important for human health control purposes. In the present work, a new sensor has been constructed using a carbon paste electrode (CPE) modified by using benzoyl ferrocene and manganese ferrite nanoparticles (MF NPs) for norepinephrine determination. The hydrothermal method was used for synthesis of MF NPs. The synthesized NPs have been characterized by XRD pattern, scanning electron microscope (SEM), FT-IR, and EDX measurements. The obtained results illustrate that, the synthesized MF NPs have the spherical morphology with a mean diameter of 27.6 nm. The obtained data showed that the oxidation of NE at the surface of the modified CPE compared to bare CPE occurs at lower potentials and with higher current intensities. The oxidation peak current increased linearly with concentration over the two range of 0.03–10.0 µM and 10.0–500.0 µM with the detection limit of 20.0 nM. The reproducibility and stability of sensor were excellent and used successfully to detect of NE in blood serum and urine samples and high recoveries were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. M. Dai, B. Haselwood, B.D. Vogt, J.T.L. Belle, Amperometric sensing of norepinephrine at picomolar concentrations using screen printed, high surface area mesoporous carbon. Anal. Chim. Acta 788, 32 (2013)

    Article  CAS  Google Scholar 

  2. S.K. Anand, M.R. Mathew, J. Radecki, H. Radecki, K.G. Kumar, Individual and simultaneous voltammetric sensing of norepinephrine and tyramine based on poly (Larginine)/reduced graphene oxide composite film modified glassy carbon electrode. J. Electroanal. Chem. 878, 114531 (2020)

    Article  CAS  Google Scholar 

  3. N. Lavanya, C. Sekar, Electrochemical sensor for simultaneous determination of epinephrine and norepinephrine based on cetyltrimethylammonium bromide assisted SnO2 nanoparticles. J. Electroanal. Chem. 801, 503–510 (2017)

    Article  CAS  Google Scholar 

  4. S. Sheikh, S.E. Haque, S.S. Mir, Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. Am. J. Neurodegener. Dis. 8, 563481 (2013)

    Google Scholar 

  5. M.M. Ardakani, M.A.S. Mohseni, M.A. Alibeik, A. Benvidi, Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sens. Actuators B Chem 380, 171 (2012)

    Google Scholar 

  6. C.R. Lake, B. Chernow, D.S. Goldstein, D.G. Glass, M. Coleman, M.G. Ziegler, Plasma catecholamine levels in normal subjects and in patients with secondary hypertension. Fed. Proc. 43, 52–56 (1984)

    CAS  Google Scholar 

  7. V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J. Chromatogr. B 847, 88–94 (2007)

    Article  CAS  Google Scholar 

  8. P. Kalimuthu, S.A. John, Selective determination of norepinephrine in the presence of ascorbic and uric acids using an ultrathin polymer film modified electrode. Electrochim. Acta 56, 2428–2432 (2011)

    Article  CAS  Google Scholar 

  9. M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, M. Abdollahi-Alibeik, New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sens. Actuators B 151, 243–249 (2010)

    Article  CAS  Google Scholar 

  10. H. Beitollahi, S. Mohammadi, Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode. Mater. Sci. Eng. C 33, 3214–3219 (2013)

    Article  CAS  Google Scholar 

  11. M. Taei, G. Ramazani, Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-Amino-2-hydroxymethylpropane-1,3-diol) film modified glassy carbon electrode. Coll. Surf. B 123, 23–32 (2014)

    Article  CAS  Google Scholar 

  12. P. Kanchana, M. Navaneethan, C. Sekar, Fabrication of Ce doped hydroxyapatite nanoparticles based non-enzymatic electrochemical sensor for the simultaneous determination of norepinephrine, uric acid and tyrosine. Mater. Sci. Eng. B 226, 132–140 (2017)

    Article  CAS  Google Scholar 

  13. S. Salmanpour, T. Tavana, A. Pahlavan, M.A. Khalilzadeh, A.A. Ensafi, H. Karimi-Maleh, H. Beitollahi, E. Kowsari, D. Zareyee, Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Mater. Sci. Eng. C 32, 1912–1918 (2012)

    Article  CAS  Google Scholar 

  14. F.M. Morawski, B.B. Xavier, A.H. Virgili, K.S. Caetano, E.W. Menezes, E.V. Benvenutti, T.M. Haas Costa, L.T. Arenas, A novel electrochemical platform based on mesoporous silica/titania and gold nanoparticles for simultaneous determination of norepinephrine and dopamine. Mater. Sci. Eng. C 120, 111646 (2021)

    Article  CAS  Google Scholar 

  15. H. Beitollahi, I. Sheikhshoaie, Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode. J. Electroanal. Chem. 661, 336–342 (2011)

    Article  CAS  Google Scholar 

  16. S. Huang, P.F. Wu, H.Y. Yue, X. Gao, S.S. Song, X.R. Guo, H.T. Chen, ZnO nanosheet arrays/graphene foam: voltammetric determination of dopamine in the presence of ascorbic acid and uric acid. J. Mater. Sci. Mater. Electron. 30, 16510–16517 (2019)

    Article  CAS  Google Scholar 

  17. S. Boobphahom, T. Siripongpreda, D.D. Zhang, J. Qin, P. Rattanawaleedirojn, N. Rodthongkum, TiO2/MXene-PVA/GO hydrogel-based electrochemical sensor for neurological disorder screening via urinary norepinephrine detection. Microchim. Acta (2021). https://doi.org/10.1007/s00604-021-04945-4

    Article  Google Scholar 

  18. R.N. Goyal, S. Bishnoi, Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. Talanta 84, 78–83 (2011)

    Article  CAS  Google Scholar 

  19. P.S. Doshi, D.J. Edwards, Effects of l-dopa on dopamine and norepinephrine concentrations in rat brain assessed by gas chromatography. J. Chromatogr. A 210, 505–511 (1981)

    Article  CAS  Google Scholar 

  20. C.L. Guan, J. Quyang, Q.L. Li, B.H. Liu, W.R.G. Baeyens, Simultaneous determination of catecholamines by ion chromatography with direct conductivity detection. Talanta 50, 1197–1203 (2000)

    Article  CAS  Google Scholar 

  21. F.B. Salem, Spectrophotometric and titrimetric determination of catecholamines. Talanta 34, 810–812 (1987)

    Article  CAS  Google Scholar 

  22. T.A. Esquivel-Castro, M.C. Ibarra-Alonso, J. Oliva, A. Martínez-Luévanos, Porous aerogel and core/shell nanoparticles for controlled drug delivery: a review. Mater. Sci. Eng. C 96, 915–940 (2019)

    Article  CAS  Google Scholar 

  23. P. Sehrawat, R.K. Malik, R. Punia, M. Sheoran, N. Kumari, S.P. Khatkar, V.B. Taxak, Luminescence tuning and structural analysis of new BaYAlZn3O7:Sm3+ nanomaterials with excellent performance for advanced optoelectronic appliances. J. Mater. Sci. 32, 15930–15943 (2021)

    CAS  Google Scholar 

  24. A.F. Moreira, C.F. Rodrigues, C.A. Reisa, E.C. Costa, I.J. Correia, Gold-core silica shell nanoparticles application in imaging and therapy: a review. Micropor. Mesopor. Mater. 270, 168–179 (2018)

    Article  CAS  Google Scholar 

  25. S.Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, S. Tajik, R. Hosseinzadeh, Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl- [1,2,3] triazol-1-yl)-1-(naphthalen-2-yl) ethenone. Measurement 155, 107522 (2020)

    Article  Google Scholar 

  26. H. Liang, Y. Zhao, H. Ye, C.-P. Li, Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5] arene decorated graphene. J. Electroanal. Chem. 855, 113487 (2019)

    Article  CAS  Google Scholar 

  27. H. Beitollahi, F. Movahedifar, S. Tajik, Sh. Jahani, A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis 31, 1195–1203 (2019)

    Article  CAS  Google Scholar 

  28. Y. Ran, Y. Li, X. Cui, T. Lai, L. Yao, R. Zhao, L. Wang, Y. Wang, Sm-doped SnO2 nanoparticles synthesized via solvothermal method as a high-performance formaldehyde sensing material for gas sensors. J. Mater. Sci. Mater. Electron. 32, 8249–8264 (2021)

    Article  CAS  Google Scholar 

  29. S.Z. Mohammadi, H. Beitollahi, Z. Dehghan, R. Hosseinzadeh, Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media. Appl. Organometal. Chem. 32, 4551 (2018)

    Article  CAS  Google Scholar 

  30. H.-A. Kalaleh, K. Masri, The role of butanol isomers on the performance of ammonia sensors based on polypyrrole prepared by microemulsion polymerization. J. Mater. Sci. Mater. Electron. 32, 8978–8988 (2021)

    Article  CAS  Google Scholar 

  31. H. Beitollahi, M.A. Khalilzadeh, S. Tajik, M. Safaei, K. Zhang, H.W. Jang, M. Shokouhimehr, Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives. ACS Omega 5, 2049–2059 (2020)

    Article  CAS  Google Scholar 

  32. S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q.V. Le, H.W. Jang, M. Shokouhimehr, Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 10, 15406–15429 (2020)

    Article  CAS  Google Scholar 

  33. S. Fan, L. Ji, G. Mao, X. Sui, H. Wang, Y. Zhu, H. Song, Voltammetric determination of phentolamine mesylate in pharmaceutical formulations at poly (4-aminobenzene sulfonic acid)-modified glassy carbon electrode. Chem. Pap. 74, 4411–4417 (2020)

    Article  CAS  Google Scholar 

  34. S.Z. Mohammadi, H. Beitollahi, E. Bani Asadi, Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environ. Monit. Assess. 187, 122 (2015)

    Article  CAS  Google Scholar 

  35. C.M. Kuskur, B.E. Kumara Swamy, H. Jayadevappa, P.S. Ganesh, Poly (rhodamine B) sensor for norepinephrine and paracetamol: a voltammetric study. Ionics 24, 3631–3640 (2018)

    Article  CAS  Google Scholar 

  36. S. Tajik, H. Beitollahi, P. Biparva, Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. J Serb. Chem. Soc. 83, 863–874 (2018)

    Article  CAS  Google Scholar 

  37. A. Yousefi, A. Bagheri, A new sensor based on glassy carbon electrode modified with Fe3O4@MCM-48-SO3H/multi-wall carbon nanotubes composite for simultaneous determination of norepinephrine and tyrosine in the presence of ascorbic acid. Ionics 25, 2845–2856 (2019)

    Article  CAS  Google Scholar 

  38. S. Esfandiari Baghbamidi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int. J. Electrochem. Sci. 11, 10874–10883 (2016)

    Article  CAS  Google Scholar 

  39. S. Tajik, H. Beitollahi, F. Garkani Nejad, K.O. Kirlikovali, Q.V. Le, H.W. Jang, R.S. Varma, O.K. Farha, M. Shokouhimehr, Recent electrochemical applications of metal-organic framework-based materials. Cryst. Growth Des. 20, 7034–7064 (2020)

    Article  CAS  Google Scholar 

  40. S. Kandula, P. Jeevanandam, A facile synthetic approach for SiO2@Co3O4 core–shell nanorattles with enhanced peroxidase-like activity. RSC Adv. 5, 5295–5306 (2015)

    Article  CAS  Google Scholar 

  41. W.P. Wicaksono, G.T.M. Kadja, D. Amalia, L. Uyun, W.P. Rini, A. Hidayat, R.L. Fahmi, D. Nasriyanti, S.G.V. Leun, H.A. Ariyanta, T.A. Ivandini, A green synthesis of gold–palladium core–shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance. Nano-Struct. Nano-Objects 24, 100535 (2020)

    Article  CAS  Google Scholar 

  42. A.A. Ansari, M. Alam, Electrochemical sensitive detection of hydrazine through cobalt-doped cerium oxide nanostructured platform. J. Mater. Sci. Mater. Electron. 32, 13897–13905 (2021)

    Article  CAS  Google Scholar 

  43. M. Nazari, H. Asadollahzadeh, M. Shahidi, N. Rastakhiz, S.Z. Mohammadi, An electrochemical nano-sensors for determination of hydrazine using modified electrode by La2O3–Co3O4 nanohybrides and ionic liquid. J. Mater. Sci. Mater. Electron. 32, 25258–25268 (2021)

    Article  CAS  Google Scholar 

  44. S.Z. Mohammadi, A. Seyedi, Preconcentration of cadmium and copper ions on magnetic core–shell nanoparticles for determination by flame atomic absorption. Environ. Toxicol. Chem. 98, 705 (2015)

    Google Scholar 

  45. Z.Y. Yuan, S.Q. Liu, T.H. Chen, J.Z. Wang, H.X. Li, Synthesis of iron-containing MCM-41. J. Chem. Soc. Chem. Commun. 9, 973–974 (1995)

    Article  Google Scholar 

  46. D. Deivatamil, M. John Abel, P. Nancy Dyana, R. Thiruneelakandan, J. Joseph Prince, A comparative study on pure and cobalt doped manganese ferrite (Co: MnFe2O4) nanoparticles in their optical, structural, and gas sensing properties. Solid State Commun. 339, 114500 (2021)

    Article  CAS  Google Scholar 

  47. B. Sahoo, S.K. Sahu, S. Nayak, D. Dhara, P. Pramanik, Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal. Sci. Technol. 2, 1367–1374 (2012)

    Article  CAS  Google Scholar 

  48. M.A. Yousuf, M.M. Baig, N.F. Al-Khalli, M.A. Khan, M.F. Aly Aboud, I. Shakir, M.F. Warsi, The impact of yttrium cations (Y3+) on structural, spectral and dielectric properties of spinel manganese ferrite nanoparticles. Ceram. Int. 45, 10936–10942 (2019)

    Article  CAS  Google Scholar 

  49. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 2001), pp. 100–137

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Islamic Azad University, Kerman Branch, for financial assistance of this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Asadollahzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarei, S., Asadollahzadeh, H., Rastakhiz, N. et al. New strategy for selective voltammetric determination of norepinephrine using modified electrode by using benzoyl ferrocene and manganese ferrite nanoparticles. J Mater Sci: Mater Electron 33, 11813–11824 (2022). https://doi.org/10.1007/s10854-022-08145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08145-5

Navigation