Skip to main content
Log in

Amperometric sensing of catechol using a glassy carbon electrode modified with ferrocene covalently immobilized on graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on a nonenzymatic catechol sensor that is based on the immobilization of ferrocene (Fc) on graphene oxide (GO). A glassy carbon electrode (GCE) was modified with GO which then was silanized with (3-aminopropyl)trimethoxysilane. Ferrocenecarboxaldehyde was then immobilized on GO via formation of a Schiff base. The immobilization process was monitored stepwise by using FTIR spectroscopy, X-ray diffraction, cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Investigation of the modified electrode by CV revealed a pair of well-defined redox peaks with anodic and cathodic peak potentials at +0.380 and +0.277 V, corresponding to the Fc/Fc+ redox couple. The Fc modified electrode exhibits excellent electrocatalytic activity towards the oxidation of catechol at a typical working voltage of +0.45 V (vs. Ag/AgCl). The response is linear in the 3 to 112 μM catechol concentration range, the detection limit is 1.1 μM, and the sensitivity is 1184.3 μA·mM−1·cm−2. The sensor is stable, reproducible and reasonably selective. It was successfully applied to the determination of catechol in spiked tap water and lake water samples.

Schematic presentation of the covalent immobilization of ferrocene on graphene oxide through (3-aminopropyl)trimethoxysilane via Schiff base condensation for nonenzymatic catechol determination. The use of the electrode with covalently linked ferrocene and a graphene oxide host results in faster and enhanced amperometric response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang J, Stuart MAC, Kamperman M (2014) Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev 43:8271–8298. doi:10.1039/c4cs00185k

    Article  CAS  Google Scholar 

  2. Baco E, Hoegy F, Schalk IJ, Mislin GLA (2014) Diphenyl-benzo[1,3]dioxole-4-carboxylic acid pentafluorophenyl ester: a convenient catechol precursor in the synthesis of siderophore vectors suitable for antibiotic trojanhorse strategies. Org Biomol Chem 12:749–757. doi:10.1039/c3ob41990h

    Article  CAS  Google Scholar 

  3. Povie G, Ford L, Pozzi D, Soulard V, Villa G, Renaud P (2016) Catechols as sources of hydrogen atoms in radical deiodination and related reactions. Angew Chem Int Ed 128:1–6. doi:10.1002/anie.201604950

    Article  Google Scholar 

  4. Quynh BTP, Byun JY, Kim SH (2015) Non-enzymatic amperometric detection of phenol and catechol using nanoporous gold. Sens Actuators B Chem 221:191–200. doi:10.1016/j.snb.2015.06.067

    Article  CAS  Google Scholar 

  5. Palanisamy S, Thangavelu K, Chen SM, Thirumalraj B, Liu XH (2016) Preparation and characterization of gold nanoparticles decorated on graphene oxide@polydopamine composite: application for sensitive and low potential detection of catechol. Sens Actuators B Chem 233:298–306. doi:10.1016/j.snb.2016.04.083

    Article  CAS  Google Scholar 

  6. Sun R, Wang Y, Ni Y, Kokot S (2014) Spectrophotometric analysis of phenols, which involves a hemin-graphene hybrid nanoparticles with peroxidase-like activity. J Hazard Mater 266:60–67. doi:10.1016/j.jhazmat.2013.12.006

    Article  CAS  Google Scholar 

  7. Proestos C, Sereli D, Komaitis M (2006) Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem 95:44–52. doi:10.1016/j.foodchem.2004.12.016

    Article  CAS  Google Scholar 

  8. Han S, Liu B, Liu Y, Fan Z (2016) Silver nanoparticle induced chemiluminescence of the hexacyanoferrate-fluorescein system, and its application to the determination of catechol. Microchim Acta 183:917–921. doi:10.1007/s00604-015-1704-4

    Article  CAS  Google Scholar 

  9. Liao CI, Ku KL (2012) Development of a signal-ratio-based antioxidant index for assisting the identification of polyphenolic compounds by mass spectrometry. Anal Chem 84:7440–7448. doi:10.1021/ac301283s

    Article  CAS  Google Scholar 

  10. Sethuraman V, Muthuraja P, Raj JA, Manisankar P (2016) A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode. Biosens Bioelectron 84:112–119. doi:10.1016/j.bios.2015.12.074

    Article  CAS  Google Scholar 

  11. Gao ZY, Gao YL, Wang E, Xu SX, Chen W (2016) Electrochemical determination of catechol based on cadmium telluride quantum dots/graphene composite film modified electrode. J Electrochem Soc 163:H528–H533. doi:10.1149/2.0681607jes

    Article  CAS  Google Scholar 

  12. Palanisamy S, Ramaraj SK, Chen SM, Velusamy V, Yang TCK, Chen TW (2017) Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine. Microchim Acta 184:1051–1057. doi:10.1007/s00604-017-2073-y

    Article  CAS  Google Scholar 

  13. Vicentini FC, Garcia LLC, Figueiredo-Filho LCS, Janegitz BC, Fatibello-Filho O (2016) A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzym Microb Technol 84:17–23. doi:10.1016/j.enzmictec.2015.12.004

    Article  Google Scholar 

  14. Karim MN, Lee JE, Lee HJ (2014) Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes. Biosens Bioelectron 61:147–151. doi:10.1016/j.bios.2014.05.011

    Article  CAS  Google Scholar 

  15. Kumar AS, Swetha P, Pillai C (2010) Enzyme-less and selective electrochemical sensing of catechol and dopamine using ferrocene bound nafion membrane modified electrode. Anal Methods 2:1962–1968. doi:10.1039/c0ay00430h

    Article  CAS  Google Scholar 

  16. Kumar SS, Kwak K, Lee D (2011) Electrochemical sensing using quantum-sized gold nanoparticles. Anal Chem 83:3244–3247. doi:10.1021/ac200384w

    Article  CAS  Google Scholar 

  17. Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin). Microchim Acta 182:1877–1884. doi:10.1007/s00604-015-1522-8

    Article  CAS  Google Scholar 

  18. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648. doi:10.1016/j.bios.2011.05.039

    Article  CAS  Google Scholar 

  19. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44. doi:10.1007/s00604-016-2007-0

    Article  CAS  Google Scholar 

  20. Cheng X, Zhang J, Chang H, Luo L, Nie F, Feng X (2016) High performance cu/Cu2O nanohybrid electrocatalyst for nonenzymatic glucose detection. J Mater Chem B 4:4652–4656. doi:10.1039/c6tb01158f

    Article  CAS  Google Scholar 

  21. Song J, Xu L, Xing R, Li Q, Zhou C, Liu D, Song H (2014) Synthesis of au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. Sci Rep 4:7515. doi:10.1038/srep07515

    Article  CAS  Google Scholar 

  22. Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H (2013) Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl Mater Interfaces 5:12928–12934. doi:10.1021/am403508f

    Article  CAS  Google Scholar 

  23. Sudhesh P, Balamurugan T, Berchmans S (2016) Insights into ferrocene-mediated nitric oxide sensing - elucidation of mechanism and isolation of intermediate. Electrochim Acta 210:321–327. doi:10.1016/j.electacta.2016.05.153

    Article  CAS  Google Scholar 

  24. Rabti A, Raouafi N, Merkoci A (2016) Bio(sensing) devices based on ferrocene- functionalized graphene and carbon nanotubes. Carbon 108:481–514. doi:10.1016/j.carbon.2016.07.043

    Article  CAS  Google Scholar 

  25. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  26. Rajesh R, Sujanthi E, Kumar SS, Venkatesan R (2015) Designing versatile heterogeneous catalysts based on ag and au nanoparticles decorated on chitosan functionalized graphene oxide. Phys Chem Chem Phys 17:11329–11340. doi:10.1039/c5cp00682a

    Article  CAS  Google Scholar 

  27. Zhang F, Jiang H, Li X, Wu X, Li H (2014) Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot cascade reactions. ACS Catal 4:394–401. doi:10.1021/cs400761r

    Article  CAS  Google Scholar 

  28. Qu F, Zhang Y, Rasooly A, Yang M (2014) Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix. Anal Chem 86:973–976. doi:10.1021/ac403478z

    Article  CAS  Google Scholar 

  29. Xia N, Zhang Y, Chang K, Gai X, Jing Y, Li S, Liu L, Qu G (2015) Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J Electroanal Chem 746:68–74. doi:10.1016/j.jelechem.2015.03.030

    Article  CAS  Google Scholar 

  30. Lu L, Huang X, Dong Y, Huang Y, Pan X, Wang X, Feng M, Luo Y, Fang D (2015) Facile method for fabrication of self-supporting nanoporous gold electrodes via cyclic voltammetry in ethylene glycol, and their application to the electrooxidative determination of catechol. Microchim Acta 182:1509–1517. doi:10.1007/s00604-015-1479-7

    Article  CAS  Google Scholar 

  31. Mu S (2006) Catechol sensor using poly(aniline-co-o-aminophenol) as an electron transfer mediator. Biosens Bioelectron 21:1237–1243. doi:10.1016/j.bios.2005.05.007

    Article  CAS  Google Scholar 

  32. Huang KJ, Wang L, Li J, Yu M, Liu YM (2013) Electrochemical sensing of catechol using a glassy carbon electrode modified with a composite made from silver nanoparticles, polydopamine, and graphene. Microchim Acta 180:751–757. doi:10.1007/s00604-013-0988-5

    Article  CAS  Google Scholar 

  33. Liu L, Ma Z, Zhu X, Alshahrani LA, Tie S, Nan J (2016) A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone. Microchim Acta 183:3293–3301. doi:10.1007/s00604-016-1973-6

    Article  CAS  Google Scholar 

  34. Zhao X, He D, Wang Y, Hu Y, Fu C (2016) Au nanoparticles and graphene quantum dots co-modified glassy carbon electrode for catechol sensing. Chem Phys Lett 647:165–169. doi:10.1016/j.cplett.2016.01.019

    Article  CAS  Google Scholar 

  35. Wang Y, Qu J, Li S, Dong Y, Qu J (2015) Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine. Microchim Acta 182:2277–2283. doi:10.1007/s00604-015-1568-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Engineering Research Board (SERB), Government of India (Sanction No. SB/FT/CS-078/2014). The authors are thankful to SIF DST-VIT-FIST, VIT University, Vellore for providing the analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathavarayan Thenmozhi or Sellappan Senthilkumar.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elancheziyan, M., Manoj, D., Saravanakumar, D. et al. Amperometric sensing of catechol using a glassy carbon electrode modified with ferrocene covalently immobilized on graphene oxide. Microchim Acta 184, 2925–2932 (2017). https://doi.org/10.1007/s00604-017-2312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2312-2

Keywords

Navigation