Skip to main content
Log in

Transcription factors in abiotic stress tolerance

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Abiotic stresses such as drought, high salinity, and extreme temperatures are common adverse environmental conditions that significantly reduce the crop productivity. Plants have the capability to sense and adjust to abiotic stresses, although the degree of adaptability to specific stresses varies from species to species. The adaptability to environmental stresses is controlled by either simple or complex cascades of molecular networks. Transcription factors (TFs) play vital regulatory roles in abiotic stress responses in plants by interacting with cis-elements present in the promoter region of various abiotic stress responsive genes. The identification and molecular tailoring of novel TFs involved in environmental stress responses have the potential to overcome a number of important limitations encountered in the generation of transgenic crop plants with superior yield under stress conditions. This opens an excellent opportunity to develop stress tolerant crops in future. This review summarizes the role of various transcription factors in crop improvement through transgenic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdeen, A., Schnell, J., & Miki, B. (2010). Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics, 11, 1–21.

    Article  Google Scholar 

  • Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Shinozaki, Y. K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15, 63–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Agarwal, P., Arora, R., Ray, S., Singh, A. K., Singh, V. P., Takatsuj, H., et al. (2007). Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 65, 467–485.

    Article  CAS  PubMed  Google Scholar 

  • Ali, K., Gujjar, R. S., Niwas, R., Gopal, M., & Tyagi, A. (2011). A Rapid method for estimation of abscisic acid and characterization of ABA regulated gene in response to water deficit stress from rice. American Journal of Plant Physiology, 6, 144–156.

    Article  CAS  Google Scholar 

  • Chen, J. R., Lu, J. J., Liu, R., Xiong, X. Y., Wang, T. X., Chen, S. Y., et al. (2010). DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.). Plant Growth Regulation, 60, 199–211.

    Article  CAS  Google Scholar 

  • Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., & Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819, 120–128.

  • Correa, L. G. G., Pachon, D. M. R., Schrago, C. G., Santos, R. V., Roeber, B. M., & Vincentz, M. (2008). The role of bZIP transcription factors in green plant evolution: Adaptive features emerging from four founder genes. PLoS ONE, 3, 1–16.

    Article  Google Scholar 

  • Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15(10), 573–581.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo, D. D., Barros, P. M., Cordeiro, A. M., Serra, T. S., Lourenc, T., Subhash, C. M., et al. (2012). Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. Journal of Experimental Botany, 63(10), 3643–3656.

    Article  CAS  PubMed  Google Scholar 

  • Gao, F., Xiong, A., Peng, R., Jin, X., Xu, J., Zhu, B., et al. (2010). OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell, Tissue and Organ Culture, 100, 255–262.

    Article  CAS  Google Scholar 

  • Gao, J. J., Zhang, Z., Peng, R. H., Xiong, A. S., Xu, J., Zhu, B., et al. (2011). Forced expression of Mdmyb10, a MYB transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Molecular Biology Reports, 38, 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Gilmour, S. J., Fowler, S. G., & Thomashow, M. F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Molecular Biology, 54, 767–781.

    Article  CAS  PubMed  Google Scholar 

  • Gilmour, S. J., Sebolt, A. M., Salazar, M. P., Everard, J. D., & Thomashow, M. F. (2000). Over-expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology, 124, 1854–1865.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golldack, D., Luking, I., & Yang, O. (2011). Plant tolerance to drought and salinity: Stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 30, 1383–1391.

    Article  CAS  PubMed  Google Scholar 

  • He, J. X., Mu, R. L., Cao, W. H., Zhang, Z. G., Zhang, J. S., & Chen, S. Y. (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant Journal, 44, 903–916.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M. A., Lee, Y., Cho, J., Ahn, C. H., Lee, S. K., Jeon, J. S., et al. (2010). The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Molecular Biology, 72, 557–566.

    Article  Google Scholar 

  • Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., et al. (2006). Over-expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of National Academy of Sciences, 103, 12987–12992.

    Article  CAS  Google Scholar 

  • Huang, X. Y., Chao, D. Y., & Gao, J. P. (2009). A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Gene Dev., 23, 1805–1817.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S. H., Choi, Y. D., et al. (2010). Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 153, 185–197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang, Y., & Deyholos, M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91–105.

    Article  CAS  PubMed  Google Scholar 

  • Kam, J., Gresshoff, P. M., & Shorter, R. (2008). The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. Plant Molecular Biology, 67, 305–322.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J., Choi, H., Im, M., & Kim, S. Y. (2002). Arabidopsis basic leucine zipper proteins mediate stress-responsive abscisic acid signaling. Plant Cell, 14, 343–357.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiribuchi, K., Jikumaru, Y., Kaku, H., Minami, E., Hasegawa, M., & Kodama, O. (2005). Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Bioscience, Biotechnology and Biochemistry, 69, 1042–1044.

    Article  CAS  Google Scholar 

  • Kobayashi, F., Maeta, E., Terashima, A., Kawaura, K., Ogihara, Y., & Takumi, S. (2008). Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany, 59, 891–905.

    Article  CAS  PubMed  Google Scholar 

  • Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X., & Harper, J. F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130, 2129–2141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lata, C., & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 62, 4731–4748.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Cheng, X., Liu, J., Zeng, H., Han, L., & Tang, W. (2011). Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnology Reports, 5, 61–69.

    Article  Google Scholar 

  • Lippold, F., Sanchez, D. H., Musialak, M., Schlereth, A., Scheible, W. R., Hincha, D. K., et al. (2009). AtMyb41 regulates transcriptional and metabolic signaling responses to osmotic stress in Arabidopsis. Plant Physiology, 149, 1761–1772.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, Q. L., Xu, K. D., Zhao, L. J., Pan, Y. Z., Jiang, B. B., Zhang, H. Q., et al. (2011). Over-expression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnology Letters, 33, 2073–2082.

    Article  CAS  PubMed  Google Scholar 

  • Lu, M., Ying, S., Zhang, D. F., Shi, Y. S., Song, Y. C., Wang, T. Y., et al. (2012). A maize stress responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Reports, 31, 1701–1711.

    Article  CAS  PubMed  Google Scholar 

  • Mao, X., Jia, D., Li, A., Zhang, H., Tian, S., Zhang, X., et al. (2011). Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Functional & Integrative Genomics, 11, 445–465.

    Article  CAS  Google Scholar 

  • Mao, X., Zhang, H., Qian, X., Li, A., Zhao, G., & Jing, R. (2012). TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 63(8), 2933–2946.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mare, C., Mazzucotelli, E., Crosatti, C., Francia, E., Stanca, A. M., & Cattivelli, L. (2004). Hv-WRKY38: A new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 55, 399–416.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant Journal, 38, 982–993.

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan, A., Jain, M., Tyagi, A. K., & Khurana, J. P. (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 146, 333–350.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogo, Y., Itai, R. N., Nakanishi, H., Kobayashi, T., Takahashi, M., & Mori, S. (2007). The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant Journal, 51, 366–377.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, T. M. D., Cidade, L. C., Gesteira, A. S., Filho, M. A. C., Filho, W. S. S., & Costa, M. G. C. (2011). Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genetics and Genomes, 7, 1123–1134.

    Article  Google Scholar 

  • Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E., & Mattana, M. (2008). Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Reports, 27, 1677–1686.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G. L., & Reddy, A. R. (2008). Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Molecular Biology, 68, 533–555.

    Article  PubMed  Google Scholar 

  • Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., et al. (2010). ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant Journal, 63, 417–429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saad, R. B., Zouari, N., Ramdhan, W. B., Azaza, J., Meynard, D., Guiderdoni, E., et al. (2010). Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Molecular Biology, 72, 171–190.

    Article  PubMed  Google Scholar 

  • Savitch, L. V., Allard, G., Seki, M., Robert, L. S., Tinker, N. A., Huner, N. P. A., et al. (2005). The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant and Cell Physiology, 46, 1525–1539.

    Article  CAS  PubMed  Google Scholar 

  • Seki, M., Rabbani, M. A., Maruyama, K., Abe, H., Khan, A. M., Katsura, K., et al. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133, 1755–1767.

    Article  PubMed Central  PubMed  Google Scholar 

  • Seo, P. J., Xiang, F., Qiao, M., Park, J. Y., Lee, Y. N., Kim, S. G., et al. (2009). The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiology, 151, 275–289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimono, M., Sugano, S., Nakayama, A., Jiang, C. J., Ono, K., Toki, S., et al. (2007). Rice WRKY45 plays a crucial role in benzothiadiazole inducible blast resistance. Plant Cell, 19, 2064–2076.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinozaki, Y. K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic and cold stress responsive promoters. Trends in Plant Science, 10, 88–94.

    Article  PubMed  Google Scholar 

  • Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., et al. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell, 16, 2481–2498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel, J. T., Zarka, D. G., Buskirk, H. A. V., Fowler, S. G., & Thomashow, M. F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant Journal, 41, 195–211.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Gao, C., Liang, Y., Wang, C., Yang, C., & Liu, G. (2010). A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. Journal of Plant Physiology, 167, 222–230.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Hou, X., Tang, J., Wang, Z., Wang, S., Jiang, F., et al. (2012). A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Molecular Biology Reports, 39, 4553–4564.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Yoko, S., Kishitani, S., Ito, Y., & Toriyama, K. (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 28, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Xu, K., Xu, X., Fukao, T., Canlas, P., & Rodriguez, M. R. (2006). Sub1A is an ethylene response-factor-like gene that confers submergence tolerance to rice. Nature, 442, 705–708.

    Article  CAS  PubMed  Google Scholar 

  • Yanez, M., Caceres, S., Orellana, S., Bastias, A., Verdugo, I., Lara, S. R., et al. (2009). An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Reports, 28, 1497–1507.

    Article  CAS  PubMed  Google Scholar 

  • Yang, A., Dai, X., & Zhang, W. H. (2012). A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 63(7), 2541–2556.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, B., Jiang, Y., Rahman, M. H., Deyholos, M. K., & Kav, N. V. (2009). Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biology, 9, 1–19.

    Article  Google Scholar 

  • Yang, W., Liu, X. D., Chi, X. J., Wu, C. A., Li, Y. Z., Song, L. L., et al. (2011). Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta, 233, 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. Z., Creelman, R. A., & Zhu, J. K. (2004). From laboratory to field, using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiology, 135, 615–621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, L., Zhao, G., Jia, J., Liu, X., & Kong, X. (2012). Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. Journal of Experimental Botany, 63(1), 203–214.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng, X., Chen, B., Lu, G., & Han, B. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communicatons, 379, 985–989.

    Article  CAS  Google Scholar 

  • Zhou, J., Li, F., Wang, J., Ma, Y., Chong, K., & Xu, Y. (2009). Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt and osmotic stress in Arabidopsis. Journal of Plant Physiology, 166, 1296–1306.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q. Y., Tian, A. G., Zou, H. F., Xie, Z. M., Lei, G., Huang, J., et al. (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6, 486–503.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou, X., Shen, Q. J., & Neuman, D. (2007). An ABA inducible WRKY gene integrates responses of creosote bush (Larrea tridentate) to elevated CO2 and abiotic stresses. Plant Science, 172, 997–1004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am greatly thankful to Dr. Aruna Tyagi, Division of Biochemistry, IARI, New Delhi and Dr. Ajay Arora, Division of Plant Physiology, IARI, New Delhi for extending their kind help in developing my interest and broadening my knowledge in drought responsive transcription factors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Singh Gujjar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gujjar, R.S., Akhtar, M. & Singh, M. Transcription factors in abiotic stress tolerance. Ind J Plant Physiol. 19, 306–316 (2014). https://doi.org/10.1007/s40502-014-0121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-014-0121-8

Keywords

Navigation