Skip to main content
Log in

An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Wild relatives of cultivated tomato (Solanum lycopersicum) are resistant to a wide range of abiotic and biotic stress conditions. In an effort to understand the molecular mechanisms of salt stress resistance in the wild and cultivated Solanum species, a basic leucine zipper (bZIP) transcription factor was identified in S. chilense, S. peruvianum and S. lycopersicum and named ScAREB1, SpAREB1 and SlAREB1, respectively. Deduced amino acid sequences of the three proteins are 97% identical among them and present high homology with the ABF/AREB subfamily of transcription factors described in different plant species, including Arabidopsis (ABF2, 54% identical) and tobacco (PHI-2, 50% identical). Expression of these orthologous genes is upregulated similarly in the three species by salt stress. The expression of SlAREB1 was further investigated in S. lycopersicum and found to be induced by drought, cold and abscisic acid. To investigate the possible role of this transcription factor in response to abiotic stress, a simple transient expression assay was used for rapid analysis of genes regulated by SlAREB1 in tomato and tobacco by means of Agrobacterium-mediated transformation. Tobacco leaves expressing SlAREB1 showed upregulation of stress-responsive genes such as RD29B, the LEA genes ERD10B and TAS14, the transcription factor PHI-2 and a trehalose-6-phosphate phosphatase gene. These results suggest that this class of bZIP plays a role in abiotic stress response in the Solanum genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AREB:

ABA-response element binding factor

bZIP:

Basic leucine zipper

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in ABA signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403

    Article  PubMed  CAS  Google Scholar 

  • Casaretto JA, Ho T-H (2003) The transcription factors HvABI5 and HvVP1 are required for the ABA induction of gene expression in barley aleurone cells. Plant Cell 15:271–284

    Article  PubMed  CAS  Google Scholar 

  • Casaretto JA, Ho T-H (2005) Transcriptional regulation by abscisic acid in barley (Hordeum vulgare L.) seeds involves autoregulation of the transcription factor HvABI5. Plant Mol Biol 57:21–34

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Provart N, Glazebrook J, Katagiri F, Chang H, Eulgem T, Mauch F, Luan S, Zou G, Whitham S (2002) Expression profile matrix of Arabidopsis transcription factor genes implies their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  • Chetelat RT, Pertuzé RA, Faúndez L, Graham EB, Jones CM (2009) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica. doi:10.1007/s10681-008-9863-6

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Moses MS, Plant AL, Bray EA (1999) Multiple mechanisms control the expression of abscisic acid (ABA)-requiring genes in tomato plants exposed to soil water deficit. Plant Cell Environ 22:989–998

    Article  CAS  Google Scholar 

  • Deng X, Phillips J, Meijer AH, Salamini F, Bartels D (2002) Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 49:601–610

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Dickson E (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715–722

    Article  Google Scholar 

  • Finkelstein R, Lynch T (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinosaki K, Yamaguchi-Shinosaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Ge L, Chao D, Shi M et al (2008) Overexpression of the trehalose-6-phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress-responsive genes. Planta 228:191–201

    Article  PubMed  CAS  Google Scholar 

  • Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    Article  PubMed  CAS  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA 96:15348–15353

    Article  PubMed  CAS  Google Scholar 

  • Iwata Y, Fedoroff NV, Koizumi N (2008) Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20:3107–3121

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: β-glucosidase as sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kahn TL, Fender SE, Bray EA, O’Connell MA (1993) Characterization of expression of drought- and abscisic acid-regulated tomato genes in the drought-resistant species Lycopersicon pennellii. Plant Physiol 103:597–605

    PubMed  CAS  Google Scholar 

  • Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis basic leucine zipper proteins mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004a) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Kang JY, Kim SY (2004b) Overexpression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA-response element-binding factors. Plant J 44:939–949

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134:74–86

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta. doi:10.1007/s00425-008-0857-3

  • Oh SH, Song SI, Kim IS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Parra MM, del Pozo O, Luna R, Godoy JA, Pintor-Toro JA (1996) Structure of the dehydrin tas14 gene of tomato and its developmental and environmental regulation in transgenic tobacco. Plant Mol Biol 32:453–460

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 9.47–9.58

  • Sano T, Nagata T (2002) The possible involvement of a phosphate-induced transcription factor encoded by phi-2 gene from tobacco in ABA-signaling pathways. Plant Cell Physiol 43:12–20

    Article  PubMed  CAS  Google Scholar 

  • Seong ES, Kwon SS, Ghimire BK, Yu CY, Cho DH, Lim JD, Kim KS, Heo K, Lim ES, Chung IM, Kim MJ, Lee YS (2008) LebZIP2 induced by salt and drought stress and transient overexpression by Agrobacterium. BMB Rep 41:693–698

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.] Taxon 54:43–61

  • Tapia G, Verdugo I, Yañez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, González E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138:2075–2086

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furuhata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Hao YJ, Zhang ZG, Chen T, Zhang JS, Chen SY (2005) Isolation of trehalose-6-phosphate phosphatase gene from tobacco and its functional analysis in yeast cells. J Plant Physiol 162:215–223

    Article  PubMed  CAS  Google Scholar 

  • Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Dröge-Laser W (2009) Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol 69:107–119

    Article  PubMed  CAS  Google Scholar 

  • Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Zegzouti H, Jones B, Marty C, Lelièvre JM, Latché A, Pech JC, Bouzayen M (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847–854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Enrique González for critical review of this manuscript. This work was supported by grants from Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT project number 1060843) and International Foundation for Science (IFS grant number C-4075) to J.A. Casaretto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Casaretto.

Additional information

Communicated by P. Puigdomenech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yáñez, M., Cáceres, S., Orellana, S. et al. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 28, 1497–1507 (2009). https://doi.org/10.1007/s00299-009-0749-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0749-4

Keywords

Navigation