Skip to main content
Log in

Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We describe here the isolation of a novel gene, designated AlSAP, from A. littoralis in a first step to exploit the potential of this halophyte grass as a genetic resource to improve salt and drought tolerance in plants and, particularly, in cereals. The Aeluropus genome contains a single AlSAP gene which has an intron at its 5’UTR. Sequence homology analysis showed that the AlSAP protein is characterized by the presence of two conserved zinc-finger domains A20 and AN1. AlSAP is induced not only by various abiotic stresses such as salt, osmotic, heat and cold but, also by abscisic acid (ABA) and salicylic acid (SA). Tobacco plants expressing the AlSAP gene under the control of the duplicated CaMV35S promoter exhibited an enhanced tolerance to abiotic stresses such as salinity (350 mM NaCl), drought (soil Relative Water Content (RWC) = 25%), heat (55°C for 2.5 h) and freezing (−20°C for 3 h). Moreover, under high salt and drought conditions, the transgenic plants were able to complete their life cycle and to produce viable seeds while the wild-type plants died at the vegetative stage. Measurements of the leaf RWC and of the root and leaf endogenous Na+ and K+ levels in AlSAP transgenic lines compared to wild-type tobacco, showed an evident lower water loss rate and a higher Na+ accumulation in senescent-basal leaves, respectively. Finally, we found that the steady state levels of transcripts of eight stress-related genes were higher in AlSAP transgenic lines than in wild-type tobacco. Taken together, these results show that AlSAP is a potentially useful candidate gene for engineering drought and salt tolerance in cultivated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta, vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Baek K, Skinner DZ, Ling P, Chen X (2006) Molecular structure and organization of the wheat genomic manganese superoxide dismutase gene. Genome 49:209–218

    Article  CAS  PubMed  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362. doi:10.1006/jmbi.1999.3310

    Article  CAS  PubMed  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumifaciens after freeze–thaw transformation and drug selection. Biotechniques 16:664–668

    CAS  PubMed  Google Scholar 

  • De Valck D, Heyninck K, Van Criekinge W, Contreras R, Beyaert R, Fiers W (1996) A20, an inhibitor of cell death, self-associates by its zinc finger domain. FEBS Lett 384:61–64. doi:10.1016/0014-5793(96)00283-9

    Article  PubMed  Google Scholar 

  • De Valck D, Jin DY, Heyninck K, Van de Craen M, Contreras R, Fiers W, Jeang KT, Beyaert R (1999) The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 18:4182–4190

    Article  PubMed  Google Scholar 

  • Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O’Rourke K, Ward PA, Prochownik EV, Marks RM (1990) Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 265:2973–2978

    CAS  PubMed  Google Scholar 

  • Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Duan W, Sun B, LiT Wei, Tan B, Lee M, Teo TS (2000) Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo. Gene 256:113–121

    Article  CAS  PubMed  Google Scholar 

  • Evans PC, Ovaa H, Hamon M, Kilshaw PE, Hamm S, Bauer S, Ploegh HL, Smith TS (2004) Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 378:727–734. doi:10.1042/BJ20031377

    Article  CAS  PubMed  Google Scholar 

  • Figueras M, Pujal J, Saleh A, Savé R, Pagès M, Goday A (2004) A Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol 44:251–257

    Article  Google Scholar 

  • Grover A, Kapoor A, Lakshmi OS, Agarwal S, Sahi CH, Katiyar-Agarwal S, Agarwal M, Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80:206–221

    CAS  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2003) Effects of salinity on growth, ionic content and plant-water status of Aeluropus lagopoides. Commun Soil Sci Plant Anal 34:1657–1668

    Article  CAS  Google Scholar 

  • Heyninck K, Beyaert R (2005) A20 inhibits NF-kB activation by dual ubiquitin-editing functions. Trends Biochem Sci 30:1–4. doi:10.1016/j.tibs.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  • Hishiya A, Iemura S, Natsume T, Takayama S, Ikeda K (2006) A novel ubiquitinbinding protein ZNF21 functioning in muscle atrophy. EMBO J 25:554–564. doi:10.1038/sj.emboj.7600945

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of the vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180. doi:10.1038/303179a0

    Article  CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1988) Leaf disc transformation. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, pp 1–9

    Google Scholar 

  • Huang J, Teng L, Li L, Liu T, Li L, Chen D, Xu LG, Zhai Z, Shu HB (2004) ZNF216 is an A20-like and IkappaB kinase gammainteracting inhibitor of NF kappaB activation. J Biol Chem 279:16847–16853. doi:10.1074/jbc.M309491200

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, Xu DQ, Lan HX, Zhang HS (2008) Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420:135–144. doi:10.1016/j.gene.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Wang M, Fu J, Xuan N, Zhu Y, Lian Y, Jia Z, Zheng J, Wang G (2007) Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics 90:265–275. doi:10.1016/j.ygeno.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462. doi:10.1007/s11103-007-9284-2

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289:2350–2354. doi:10.1126/science.289.5488.2350

    Article  CAS  PubMed  Google Scholar 

  • Li MY, Liu YJ (1994) Halophytes of yellow river delta in north shandong province of China. J Qufu Normal Univ 125–133

  • Linnen JM, Bailey CP, Weeks DL (1993) Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene 128:181–188. doi:10.1016/0378-1119(93)90561-G

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314. doi:10.1073/pnas.0401572101

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:15473–15497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Opipari AW, Boguski MS, Dixit VM (1990) The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 265:14705–14708

    CAS  PubMed  Google Scholar 

  • Orvar BL, Ellis BE (1995) Isolation of a cDNA encoding cytosolic ascorbate peroxidase in tobacco. Plant Physiol 108:839–840

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “Redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468. doi:10.1104/pp.011021

    Article  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Hoi Pham X, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514. doi:10.1073/pnas.0406485102

    Article  CAS  PubMed  Google Scholar 

  • Savé R, Alegre L, Pery M, Terradas J (1993) Ecophysiology of after-fire resprouts of Arbutus unedo L. Orsis 8:107–119

    Google Scholar 

  • Scott DA et al (1998) Identification and mutation analysis of a cochlearexpressed, zinc finger protein gene at the DFNB7/11 and dn hearing-loss-loci on human chromosome 9q and mouse chromosome19. Gene 215:461–469. doi:10.1016/S0378-1119(98)00316-3

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223. doi:10.1016/S1369-5266(00)00067-4

    CAS  PubMed  Google Scholar 

  • Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA (1989) Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol 90:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677. doi:10.1073/pnas.2034667100

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180. doi:10.1007/s11248-007-9082-2

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Chen Z, Du H, Liu Y, Klessig DF (1997) Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J 11:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54:582–596. doi:10.1007/s000180050186

    Article  CAS  PubMed  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366. doi:10.1007/BF02180062

    Article  Google Scholar 

  • Vij S, Tyagi AK (2006) Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics 276:565–575. doi:10.1007/s00438-006-0165-1

    Article  CAS  PubMed  Google Scholar 

  • Vij Sh, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genomics 8:301–307. doi:10.1007/s10142-008-0078-7

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Salt tolerance. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis Book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0048

    Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–72. doi:10.1016/S1360-1385(00)01838-0

    Article  CAS  PubMed  Google Scholar 

  • Zouari N, Ben Saad R, Legavre Th, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene 404:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks are extended to C. Périn and M. Conte (Plant Development and Genetic Improvement (DAP) unit of CIRAD) as well as to Kh. Belhaj (CBS), A. Price (University of Aberdeen, UK) for their critical review of the manuscript. The authors are also grateful to S. Abid, a teacher of English, for the English revision. Part of this work was conducted under the REFUGE platform funded by Agropolis Fondation, Montpellier France. This study was supported by a grant from Ministry of Higher Education Scientific Research and Technology of Tunisia (contrat programme 2006–2010) and by the European project CEDROME (INCO-CT-2005-015468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afif Hassairi.

Additional information

R. Ben Saad and A. Hassairi should be considered as first authors, as they contributed equally to this work.

The AlSAP sequence was deposited to the Genbank with the accession number DQ0885218 (UniProtKB: A1YAQ3).

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2009_9560_MOESM1_ESM.tif

Supplementary Fig. 1 The nucleotide (707 bp) and the deduced amino acid sequence (159 aa) of AlSAP gene and its genomic structure. (a)The position of 5’UTR (118 bp) and 3’UTR (112 bp) are marked by line. The position of start (atg) and the stop (tga) codons are indicated by *. The A20 and AN1 domains of the peptide are indicated by dark and light grey shading respectively. The predicted serine (S), threonine (T) and tyrosine (Y) phosphorylation sites by NetPhos 2.0 Server (http://www.cbs.dtu.dk/services/NetPhos/) with a score > 0.8 are indicated by a circle. The predicted of the threonine kinase specific protein phosphoylation site (score 0.9) by NetPhosK 1.0 Server is indicated by a square. (b) The nucleotide sequence of AlSAP gene showing the presence of an intron (italic letters, 1,523 bp) in the 5’UTR (light grey shading), the ORF and the 3’UTR (dark grey shading) (TIFF 800 kb)

Supplementary material 2 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Saad, R., Zouari, N., Ben Ramdhan, W. et al. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis . Plant Mol Biol 72, 171–190 (2010). https://doi.org/10.1007/s11103-009-9560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9560-4

Keywords

Navigation