Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6(2):107–16. https://doi.org/10.1038/nrc1799.
CAS
Article
PubMed
Google Scholar
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54. https://doi.org/10.1038/ng1089.
CAS
Article
PubMed
Google Scholar
Jabir NR, Anwar K, Firoz CK, Oves M, Kamal MA, Tabrez S. An overview on the current status of cancer nanomedicines. Curr Med Res Opin. 2018;34(5):911–21. https://doi.org/10.1080/03007995.2017.1421528.
CAS
Article
PubMed
Google Scholar
Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer. 2008;99(3):392–7. https://doi.org/10.1038/sj.bjc.6604483.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther. 2007;7(6):833–7. https://doi.org/10.1586/14737140.7.6.833.
CAS
Article
PubMed
Google Scholar
Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K, Lagae L, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano. 2011;5(6):4319–28. https://doi.org/10.1021/nn1023363.
CAS
Article
PubMed
Google Scholar
Tillib SV. “Camel nanoantibody” is an efficient tool for research, diagnostics and therapy. Mol Biol (Mosk). 2011;45(1):77–85.
CAS
Article
Google Scholar
Padlan EA. Anatomy of the antibody molecule. Mol Immunol. 1994;31(3):169–217.
CAS
Article
Google Scholar
Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26(1):74–85. https://doi.org/10.1016/j.urolonc.2007.03.017.
CAS
Article
PubMed
Google Scholar
Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol. 2017;8:1442. https://doi.org/10.3389/fimmu.2017.01442.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sunada H, Magun BE, Mendelsohn J, MacLeod CL. Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci USA. 1986;83(11):3825–9.
CAS
Article
Google Scholar
Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7(4):301–11. https://doi.org/10.1016/j.ccr.2005.03.003.
CAS
Article
PubMed
Google Scholar
Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26. https://doi.org/10.1200/JCO.2002.20.3.719.
CAS
Article
PubMed
Google Scholar
Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27. https://doi.org/10.1038/nri2744.
CAS
Article
PubMed
PubMed Central
Google Scholar
Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57. https://doi.org/10.1038/nbt1137.
CAS
Article
PubMed
Google Scholar
Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.
PubMed
PubMed Central
Google Scholar
Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109(2):170–9. https://doi.org/10.1002/cncr.22402.
CAS
Article
PubMed
Google Scholar
Majidi J, Barar J, Baradaran B, Abdolalizadeh J, Omidi Y. Target therapy of cancer: implementation of monoclonal antibodies and nanobodies. Hum Antibodies. 2009;18(3):81–100. https://doi.org/10.3233/HAB-2009-0204.
CAS
Article
PubMed
Google Scholar
Epenetos AA, Snook D, Durbin H, Johnson PM, Taylor-Papadimitriou J. Limitations of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res. 1986;46(6):3183–91.
CAS
PubMed
Google Scholar
Kolkman JA, Law DA. Nanobodies—from llamas to therapeutic proteins. Drug Discov Today Technol. 2010;7(2):e95–146. https://doi.org/10.1016/j.ddtec.2010.03.002.
CAS
Article
Google Scholar
Weinstein JN, van Osdol W. Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res. 1992;52(9 Suppl):2747s–51s.
CAS
PubMed
Google Scholar
Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 1992;52(19):5144–53.
CAS
PubMed
Google Scholar
Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001;61(12):4750–5.
CAS
PubMed
Google Scholar
Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics. 2019;13:33–51. https://doi.org/10.2147/BTT.S166310.
CAS
Article
PubMed
PubMed Central
Google Scholar
Farajpour Z, Rahbarizadeh F, Kazemi B, Ahmadvand D. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochem Biophys Res Commun. 2014;446(1):132–6. https://doi.org/10.1016/j.bbrc.2014.02.069.
CAS
Article
PubMed
Google Scholar
Tijink BM, Laeremans T, Budde M, Stigter-van Walsum M, Dreier T, de Haard HJ, et al. Improved tumor targeting of anti-epidermal growth factor receptor nanobodies through albumin binding: taking advantage of modular nanobody technology. Mol Cancer Ther. 2008;7(8):2288–97. https://doi.org/10.1158/1535-7163.MCT-07-2384.
CAS
Article
PubMed
Google Scholar
Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther. 2017;42(12):742–55.
Google Scholar
Miller MA, Arlauckas S, Weissleder R. Prediction of anti-cancer nanotherapy efficacy by imaging. Nanotheranostics. 2017;1(3):296–312. https://doi.org/10.7150/ntno.20564.
Article
PubMed
PubMed Central
Google Scholar
Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24(6):1159–66. https://doi.org/10.1016/j.copbio.2013.02.020.
CAS
Article
PubMed
Google Scholar
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60. https://doi.org/10.1038/nnano.2007.387.
CAS
Article
PubMed
Google Scholar
Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst. 1989;6(3):193–210.
CAS
PubMed
Google Scholar
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.
CAS
PubMed
Google Scholar
Zhan W, Gedroyc W, Xu XY. The effect of tumour size on drug transport and uptake in 3-D tumour models reconstructed from magnetic resonance images. PLoS One. 2017;12(2):e0172276. https://doi.org/10.1371/journal.pone.0172276.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol. 2012;314:57–68. https://doi.org/10.1016/j.jtbi.2012.08.034.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008;29(2):57–61. https://doi.org/10.1016/j.tips.2007.11.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang L, Huo M, Chen Y, Shi J. Tumor microenvironment-enabled nanotherapy. Adv Healthc Mater. 2018;7(8):e1701156. https://doi.org/10.1002/adhm.201701156.
CAS
Article
PubMed
Google Scholar
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8. https://doi.org/10.1038/363446a0.
CAS
Article
PubMed
Google Scholar
Huang L, Muyldermans S, Saerens D. Nanobodies(R): proficient tools in diagnostics. Expert Rev Mol Diagn. 2010;10(6):777–85. https://doi.org/10.1586/erm.10.62.
Article
PubMed
Google Scholar
Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular imaging? Theranostics. 2014;4(4):386–98. https://doi.org/10.7150/thno.8006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Audenhove I, Gettemans J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine. 2016;8:40–8. https://doi.org/10.1016/j.ebiom.2016.04.028.
Article
PubMed
PubMed Central
Google Scholar
Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol. 2017;8:1603. https://doi.org/10.3389/fimmu.2017.01603.
CAS
Article
PubMed
PubMed Central
Google Scholar
Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97. https://doi.org/10.1146/annurev-biochem-063011-092449.
CAS
Article
PubMed
Google Scholar
Ingram JR, Schmidt FI, Ploegh HL. Exploiting nanobodies’ singular traits. Annu Rev Immunol. 2018;36:695–715. https://doi.org/10.1146/annurev-immunol-042617-053327.
CAS
Article
PubMed
Google Scholar
Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128(1–3):178–83. https://doi.org/10.1016/j.vetimm.2008.10.299.
CAS
Article
PubMed
Google Scholar
Zavrtanik U, Lukan J, Loris R, Lah J, Hadzi S. Structural basis of epitope recognition by heavy-chain camelid antibodies. J Mol Biol. 2018;430(21):4369–86. https://doi.org/10.1016/j.jmb.2018.09.002.
CAS
Article
PubMed
Google Scholar
Mitchell LS, Colwell LJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel. 2018;31(7–8):267–75. https://doi.org/10.1093/protein/gzy017.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins. 2018;86(7):697–706. https://doi.org/10.1002/prot.25497.
CAS
Article
PubMed
PubMed Central
Google Scholar
Govaert J, Pellis M, Deschacht N, Vincke C, Conrath K, Muyldermans S, et al. Dual beneficial effect of interloop disulfide bond for single domain antibody fragments. J Biol Chem. 2012;287(3):1970–9. https://doi.org/10.1074/jbc.M111.242818.
CAS
Article
PubMed
Google Scholar
Konning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, et al. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol. 2017;45:10–6. https://doi.org/10.1016/j.sbi.2016.10.019.
CAS
Article
PubMed
Google Scholar
Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998;17(13):3512–20. https://doi.org/10.1093/emboj/17.13.3512.
CAS
Article
PubMed
PubMed Central
Google Scholar
Beghein E, Gettemans J. Nanobody Technology: a versatile toolkit for microscopic imaging, protein–protein interaction analysis, and protein function exploration. Front Immunol. 2017;8:771. https://doi.org/10.3389/fimmu.2017.00771.
CAS
Article
PubMed
PubMed Central
Google Scholar
van Koningsbruggen S, de Haard H, de Kievit P, Dirks RW, van Remoortere A, Groot AJ, et al. Llama-derived phage display antibodies in the dissection of the human disease oculopharyngeal muscular dystrophy. J Immunol Methods. 2003;279(1–2):149–61.
Article
Google Scholar
Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen PM. Targeting tumors with nanobodies for cancer imaging and therapy. J Controll Release. 2013;172(3):607–17. https://doi.org/10.1016/j.jconrel.2013.08.298.
CAS
Article
Google Scholar
De Vos J, Devoogdt N, Lahoutte T, Muyldermans S. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin Biol Ther. 2013;13(8):1149–60. https://doi.org/10.1517/14712598.2013.800478.
CAS
Article
PubMed
Google Scholar
Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77(1):13–22. https://doi.org/10.1007/s00253-007-1142-2.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kunz P, Zinner K, Mucke N, Bartoschik T, Muyldermans S, Hoheisel JD. The structural basis of nanobody unfolding reversibility and thermoresistance. Sci Rep. 2018;8(1):7934. https://doi.org/10.1038/s41598-018-26338-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Arbabi-Ghahroudi M, Tanha J, MacKenzie R. Prokaryotic expression of antibodies. Cancer Metastasis Rev. 2005;24(4):501–19. https://doi.org/10.1007/s10555-005-6193-1.
Article
PubMed
Google Scholar
Dmitriev OY, Lutsenko S, Muyldermans S. Nanobodies as probes for protein dynamics in vitro and in cells. J Biol Chem. 2016;291(8):3767–75. https://doi.org/10.1074/jbc.R115.679811.
CAS
Article
PubMed
Google Scholar
Muyldermans S, Cambillau C, Wyns L. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci. 2001;26(4):230–5.
CAS
Article
Google Scholar
Klarenbeek A, El Mazouari K, Desmyter A, Blanchetot C, Hultberg A, de Jonge N, et al. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. Mabs-Austin. 2015;7(4):693–706. https://doi.org/10.1080/19420862.2015.1046648.
CAS
Article
Google Scholar
Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PM. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond). 2015;10(1):161–74. https://doi.org/10.2217/nnm.14.178.
CAS
Article
PubMed
Google Scholar
Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 2009;284(5):3273–84. https://doi.org/10.1074/jbc.M806889200.
CAS
Article
PubMed
Google Scholar
Romao E, Morales-Yanez F, Hu Y, Crauwels M, De Pauw P, Hassanzadeh GG, et al. Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des. 2016;22(43):6500–18. https://doi.org/10.2174/1381612822666160923114417.
CAS
Article
PubMed
Google Scholar
Fernandes JC. Therapeutic application of antibody fragments in autoimmune diseases: current state and prospects. Drug Discov Today. 2018;23(12):1996–2002. https://doi.org/10.1016/j.drudis.2018.06.003.
CAS
Article
PubMed
Google Scholar
ClinicalTrials.gov. NIH U.S. National Library of Medicine. 2019. https://clinicaltrials.gov/ct2/results?cond=&term=ablynx&cntry=&state=&city=&dist=. https://clinicaltrials.gov/ct2/results?cond=&term=nanobody&cntry=&state=&city=&dist=. https://clinicaltrials.gov/ct2/results?cond=&term=nanobodies&cntry=&state=&city=&dist=. https://clinicaltrials.gov/ct2/results?cond=&term=vhh&cntry=&state=&city=&dist. Accessed 19 Apr 2019.
Schoonooghe S, Laoui D, Van Ginderachter JA, Devoogdt N, Lahoutte T, De Baetselier P, et al. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology. 2012;217(12):1266–72. https://doi.org/10.1016/j.imbio.2012.07.009.
CAS
Article
PubMed
Google Scholar
Devoogdt N, Xavier C, Hernot S, Vaneycken I, D’Huyvetter M, De Vos J, et al. Molecular imaging using nanobodies: a case study. Methods Mol Biol. 2012;911:559–67. https://doi.org/10.1007/978-1-61779-968-6_35.
CAS
Article
PubMed
Google Scholar
Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. Phase I study of 68 Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57(1):27–33. https://doi.org/10.2967/jnumed.115.162024.
CAS
Article
PubMed
Google Scholar
Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S. Nanobodies and their potential applications. Nanomedicine (Lond). 2013;8(6):1013–26. https://doi.org/10.2217/nnm.13.86.
CAS
Article
PubMed
Google Scholar
Debie P, Devoogdt N, Hernot S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies. 2019;8(1):12. https://doi.org/10.3390/antib8010012.
CAS
Article
PubMed Central
Google Scholar
Xavier C, Vaneycken I, D’Huyvetter M, Heemskerk J, Keyaerts M, Vincke C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68 Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54(5):776–84. https://doi.org/10.2967/jnumed.112.111021.
CAS
Article
PubMed
Google Scholar
van de Water JA, Bagci-Onder T, Agarwal AS, Wakimoto H, Roovers RC, Zhu Y, et al. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proc Natl Acad Sci USA. 2012;109(41):16642–7. https://doi.org/10.1073/pnas.1202832109.
Article
PubMed
Google Scholar
Quader S, Kataoka K. Nanomaterial-enabled cancer therapy. Mol Ther J Am Soc Gene Ther. 2017;25(7):1501–13. https://doi.org/10.1016/j.ymthe.2017.04.026.
CAS
Article
Google Scholar
Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract. 2008;17(2):89–101. https://doi.org/10.1159/000112961.
CAS
Article
PubMed
Google Scholar
Uchegbu IF, Siew A. Nanomedicines and nanodiagnostics come of age. J Pharm Sci. 2013;102(2):305–10. https://doi.org/10.1002/jps.23377.
CAS
Article
PubMed
Google Scholar
Jain KK. Advances in the field of nanooncology. BMC Med. 2010;8:83. https://doi.org/10.1186/1741-7015-8-83.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87. https://doi.org/10.1007/s11095-016-1958-5.
CAS
Article
PubMed
Google Scholar
Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn. 2003;3(2):153–61. https://doi.org/10.1586/14737159.3.2.153.
CAS
Article
PubMed
Google Scholar
Fernandes C, Suares D, Yergeri MC. Tumor microenvironment targeted nanotherapy. Front Pharmacol. 2018;9:1230. https://doi.org/10.3389/fphar.2018.01230.
CAS
Article
PubMed
PubMed Central
Google Scholar
Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G. Nanotechnology in cancer therapy. J Drug Target. 2013;21(10):904–13. https://doi.org/10.3109/1061186X.2013.837469.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jain KK. Recent advances in nanooncology. Technol Cancer Res Treat. 2008;7(1):1–13. https://doi.org/10.1177/153303460800700101.
CAS
Article
PubMed
Google Scholar
Jain KK. Nanobiotechnology and personalized medicine. Prog Mol Biol Transl Sci. 2011;104:325–54. https://doi.org/10.1016/B978-0-12-416020-0.00008-5.
CAS
Article
PubMed
Google Scholar
Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–9. https://doi.org/10.1016/j.phrs.2010.03.005.
CAS
Article
PubMed
Google Scholar
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. https://doi.org/10.3389/fphar.2018.00790.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed. 2014;9:467–83. https://doi.org/10.2147/IJN.S36654.
CAS
Article
Google Scholar
Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434–43. https://doi.org/10.1056/NEJMra0912273.
CAS
Article
PubMed
Google Scholar
Yoon JW, Jiang W, Rutka JT, Huang Y, Kim BYS. Perspectives of nanotechnology in the management of gliomas. Prog Neurol Surg. 2018;32:196–210. https://doi.org/10.1159/000469691.
Article
PubMed
Google Scholar
Arezumand R, Alibakhshi A, Ranjbari J, Ramazani A, Muyldermans S. Nanobodies as novel agents for targeting angiogenesis in solid cancers. Front Immunol. 2017;8:1746. https://doi.org/10.3389/fimmu.2017.01746.
CAS
Article
PubMed
PubMed Central
Google Scholar
Behdani M, Zeinali S, Khanahmad H, Karimipour M, Asadzadeh N, Azadmanesh K, et al. Generation and characterization of a functional nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Mol Immunol. 2012;50(1–2):35–41. https://doi.org/10.1016/j.molimm.2011.11.013.
CAS
Article
PubMed
Google Scholar
Vosjan MJ, Vercammen J, Kolkman JA, Stigter-van Walsum M, Revets H, van Dongen GA. Nanobodies targeting the hepatocyte growth factor: potential new drugs for molecular cancer therapy. Mol Cancer Ther. 2012;11(4):1017–25. https://doi.org/10.1158/1535-7163.MCT-11-0891.
CAS
Article
PubMed
Google Scholar
Rissiek B, Koch-Nolte F, Magnus T. Nanobodies as modulators of inflammation: potential applications for acute brain injury. Front Cell Neurosci. 2014;8:344. https://doi.org/10.3389/fncel.2014.00344.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ebrahimizadeh W, Mousavi Gargari SL, Javidan Z, Rajabibazl M. Production of novel VHH nanobody inhibiting angiogenesis by targeting binding site of VEGF. Appl Biochem Biotechnol. 2015;176(7):1985–95. https://doi.org/10.1007/s12010-015-1695-y.
CAS
Article
PubMed
Google Scholar
Oliveira S, Schiffelers RM, van der Veeken J, van der Meel R, Vongpromek R, van Bergen En Henegouwen PM, et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J Controll Release. 2010;145(2):165–75. https://doi.org/10.1016/j.jconrel.2010.03.020.
CAS
Article
Google Scholar
Talelli M, Rijcken CJ, Oliveira S, van der Meel R, van Bergen En Henegouwen PM, Lammers T, et al. Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J Controll Release. 2011;151(2):183–92. https://doi.org/10.1016/j.jconrel.2011.01.015.
CAS
Article
Google Scholar
Altintas I, Heukers R, van der Meel R, Lacombe M, Amidi M, van Bergen En Henegouwen PM, et al. Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. J Controll Release. 2013;165(2):110–8. https://doi.org/10.1016/j.jconrel.2012.11.007.
CAS
Article
Google Scholar
Mima T, Nishimoto N. Clinical value of blocking IL-6 receptor. Curr Opin Rheumatol. 2009;21(3):224–30. https://doi.org/10.1097/BOR.0b013e3283295fec.
CAS
Article
PubMed
Google Scholar
Roovers RC, Vosjan MJ, Laeremans T, el Khoulati R, de Bruin RC, Ferguson KM, et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int J Cancer. 2011;129(8):2013–24. https://doi.org/10.1002/ijc.26145.
CAS
Article
PubMed
PubMed Central
Google Scholar
Scully M, Cataland SR, Peyvandi F, Coppo P, Knobl P, Kremer Hovinga JA, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.
CAS
Article
PubMed
Google Scholar
Xu X, Vugmeyster Y. Challenges and opportunities in absorption, distribution, metabolism, and excretion studies of therapeutic biologics. AAPS J. 2012;14(4):781–91. https://doi.org/10.1208/s12248-012-9388-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93(3):290–6. https://doi.org/10.1038/icb.2014.93.
CAS
Article
PubMed
Google Scholar
Xing J, Lin L, Li J, Liu J, Zhou C, Pan H, et al. BiHC, a T-cell-engaging bispecific recombinant antibody, has potent cytotoxic activity against Her2 tumor cells. Transl Oncol. 2017;10(5):780–5. https://doi.org/10.1016/j.tranon.2017.07.003.
Article
PubMed
PubMed Central
Google Scholar
Lin L, Li L, Zhou C, Li J, Liu J, Shu R, et al. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Oncol Lett. 2018;16(1):1259–66. https://doi.org/10.3892/ol.2018.8698.
CAS
Article
PubMed
PubMed Central
Google Scholar
Molgaard K, Harwood SL, Compte M, Merino N, Bonet J, Alvarez-Cienfuegos A, et al. Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother CII. 2018;67(8):1251–60. https://doi.org/10.1007/s00262-018-2181-5.
CAS
Article
PubMed
Google Scholar
Iri-Sofla FJ, Rahbarizadeh F, Ahmadvand D, Rasaee MJ. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by phiC31 integrase. Exp Cell Res. 2011;317(18):2630–41. https://doi.org/10.1016/j.yexcr.2011.08.015.
CAS
Article
PubMed
Google Scholar
Albert S, Arndt C, Feldmann A, Bergmann R, Bachmann D, Koristka S, et al. A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncoimmunology. 2017;6(4):e1287246. https://doi.org/10.1080/2162402X.2017.1287246.
Article
PubMed
PubMed Central
Google Scholar
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today. 2016;21(7):1076–113. https://doi.org/10.1016/j.drudis.2016.04.003.
CAS
Article
PubMed
Google Scholar
van der Meel R, Oliveira S, Altintas I, Haselberg R, van der Veeken J, Roovers RC, et al. Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J Controll Release. 2012;159(2):281–9. https://doi.org/10.1016/j.jconrel.2011.12.027.
CAS
Article
Google Scholar
Talelli M, Iman M, Varkouhi AK, Rijcken CJ, Schiffelers RM, Etrych T, et al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials. 2010;31(30):7797–804. https://doi.org/10.1016/j.biomaterials.2010.07.005.
CAS
Article
PubMed
Google Scholar
Moulder S, Hortobagyi GN. Advances in the treatment of breast cancer. Clin Pharmacol Ther. 2008;83(1):26–36. https://doi.org/10.1038/sj.clpt.6100449.
CAS
Article
PubMed
Google Scholar
Pruszynski M, Koumarianou E, Vaidyanathan G, Revets H, Devoogdt N, Lahoutte T, et al. Targeting breast carcinoma with radioiodinated anti-HER2 nanobody. Nucl Med Biol. 2013;40(1):52–9. https://doi.org/10.1016/j.nucmedbio.2012.08.008.
CAS
Article
PubMed
Google Scholar
Van Heeke G, Allosery K, De Brabandere V, De Smedt T, Detalle L, de Fougerolles A. Nanobodies(R) as inhaled biotherapeutics for lung diseases. Pharmacol Ther. 2017;169:47–56. https://doi.org/10.1016/j.pharmthera.2016.06.012.
CAS
Article
PubMed
Google Scholar
Hacha J, Tomlinson K, Maertens L, Paulissen G, Rocks N, Foidart JM, et al. Nebulized anti-IL-13 monoclonal antibody Fab’ fragment reduces allergen-induced asthma. Am J Respir Cell Mol Biol. 2012;47(5):709–17. https://doi.org/10.1165/rcmb.2012-0031OC.
CAS
Article
PubMed
Google Scholar
Maillet A, Guilleminault L, Lemarie E, Lerondel S, Azzopardi N, Montharu J, et al. The airways, a novel route for delivering monoclonal antibodies to treat lung tumors. Pharm Res. 2011;28(9):2147–56. https://doi.org/10.1007/s11095-011-0442-5.
CAS
Article
PubMed
Google Scholar
Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE, Mas V, et al. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob Agents Chemother. 2016;60(1):6–13. https://doi.org/10.1128/AAC.01802-15.
CAS
Article
PubMed
Google Scholar
Wang SM, He X, Li N, Yu F, Hu Y, Wang LS, et al. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting. Int J Nanomed. 2015;10:2857–69. https://doi.org/10.2147/IJN.S77268.
CAS
Article
Google Scholar
Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569–77. https://doi.org/10.1016/j.it.2015.08.006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6(4):2146–52. https://doi.org/10.1039/c3nr04878k.
CAS
Article
PubMed
Google Scholar
Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci. 2016;4(2):219–29. https://doi.org/10.1039/c5bm00383k.
CAS
Article
PubMed
Google Scholar
Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism. J Neurosci. 2011;31(26):9456–65. https://doi.org/10.1523/JNEUROSCI.1460-11.2011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cena V, Jativa P. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine (Lond). 2018;13(13):1513–6. https://doi.org/10.2217/nnm-2018-0139.
Article
PubMed
Google Scholar
Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Controll Release. 2016;235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044.
CAS
Article
Google Scholar
Stanimirovic DB, Sandhu JK, Costain WJ. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood–brain barrier. BioDrugs. 2018;32(6):547–59. https://doi.org/10.1007/s40259-018-0309-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Paterson J, Webster CI. Exploiting transferrin receptor for delivering drugs across the blood–brain barrier. Drug Discov Today Technol. 2016;20:49–52. https://doi.org/10.1016/j.ddtec.2016.07.009.
Article
PubMed
Google Scholar
Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood–brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–31. https://doi.org/10.1146/annurev-pharmtox-010814-124852.
CAS
Article
PubMed
Google Scholar
Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49–60. https://doi.org/10.1016/j.neuron.2013.10.061.
CAS
Article
PubMed
Google Scholar
Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J Pharmacol Exp Ther. 1991;259(1):66–70.
CAS
PubMed
Google Scholar
Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgard PO, Niewoehner J. A human blood–brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One. 2014;9(4):e96340. https://doi.org/10.1371/journal.pone.0096340.
CAS
Article
PubMed
PubMed Central
Google Scholar
Farrington GK, Caram-Salas N, Haqqani AS, Brunette E, Eldredge J, Pepinsky B, et al. A novel platform for engineering blood–brain barrier-crossing bispecific biologics. FASEB J. 2014;28(11):4764–78. https://doi.org/10.1096/fj.14-253369.
CAS
Article
PubMed
Google Scholar
Muruganandam A, Tanha J, Narang S, Stanimirovic D. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium. FASEB J. 2002;16(2):240–2. https://doi.org/10.1096/fj.01-0343fje.
CAS
Article
PubMed
Google Scholar
Tanha J, Muruganandam A, Stanimirovic D. Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol Med. 2003;89:435–49. https://doi.org/10.1385/1-59259-419-0:435.
CAS
Article
PubMed
Google Scholar
Abulrob A, Sprong H, Van Bergen en Henegouwen P, Stanimirovic D. The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005;95(4):1201–14. https://doi.org/10.1111/j.1471-4159.2005.03463.x.
CAS
Article
PubMed
Google Scholar
Haqqani AS, Delaney CE, Brunette E, Baumann E, Farrington GK, Sisk W, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood–brain barrier. J Cereb Blood Flow Metab. 2018;38(4):727–40. https://doi.org/10.1177/0271678X17740031.
CAS
Article
PubMed
Google Scholar
Suffredini G, East JE, Levy LM. New applications of nanotechnology for neuroimaging. AJNR Am J Neuroradiol. 2014;35(7):1246–53. https://doi.org/10.3174/ajnr.A3543.
CAS
Article
PubMed
Google Scholar
Li T, Bourgeois JP, Celli S, Glacial F, Le Sourd AM, Mecheri S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood–brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J. 2012;26(10):3969–79. https://doi.org/10.1096/fj.11-201384.
CAS
Article
PubMed
Google Scholar
Rutgers KS, Nabuurs RJ, van den Berg SA, Schenk GJ, Rotman M, Verrips CT, et al. Transmigration of beta amyloid specific heavy chain antibody fragments across the in vitro blood–brain barrier. Neuroscience. 2011;190:37–42. https://doi.org/10.1016/j.neuroscience.2011.05.076.
CAS
Article
PubMed
Google Scholar
Caljon G, Caveliers V, Lahoutte T, Stijlemans B, Ghassabeh GH, Van Den Abbeele J, et al. Using microdialysis to analyse the passage of monovalent nanobodies through the blood–brain barrier. Br J Pharm. 2012;165(7):2341–53. https://doi.org/10.1111/j.1476-5381.2011.01723.x.
CAS
Article
Google Scholar
Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR nanobodies. Cancer Immunol Immunother CII. 2007;56(3):303–17. https://doi.org/10.1007/s00262-006-0180-4.
CAS
Article
PubMed
Google Scholar
Hulstein JJ, de Groot PG, Silence K, Veyradier A, Fijnheer R, Lenting PJ. A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B. Blood. 2005;106(9):3035–42. https://doi.org/10.1182/blood-2005-03-1153.
CAS
Article
PubMed
Google Scholar
Bhoopalan SV, Hankins J, George J, Ryder A, Onder AM, Puri L. Use of caplacizumab in a child with refractory thrombotic thrombocytopenic purpura. Pediatr Blood Cancer. 2019;66(7):e27737. https://doi.org/10.1002/pbc.27737.
Article
PubMed
Google Scholar
Kaczmarek V, Holle J, Astudillo R, Kempf C, Bufler P, Muller D. Caplacizumab for relapsing thrombotic thrombocytopenic purpura. Pediatr Nephrol. 2019. https://doi.org/10.1007/s00467-019-04281-z.
Article
PubMed
Google Scholar
Peyvandi F, Callewaert F. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016;374(25):2497–8. https://doi.org/10.1056/NEJMc1603180.
Article
PubMed
Google Scholar
Peyvandi F, Scully M, Kremer Hovinga JA, Cataland S, Knobl P, Wu H, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016;374(6):511–22. https://doi.org/10.1056/NEJMoa1505533.
CAS
Article
PubMed
Google Scholar
Peyvandi F, Scully M, Kremer Hovinga JA, Knobl P, Cataland S, De Beuf K, et al. Caplacizumab reduces the frequency of major thromboembolic events, exacerbations and death in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost JTH. 2017;15(7):1448–52. https://doi.org/10.1111/jth.13716.
CAS
Article
PubMed
Google Scholar
Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Controll Release. 2012;161(2):429–45. https://doi.org/10.1016/j.jconrel.2011.11.028.
CAS
Article
Google Scholar
Van Roy M, Ververken C, Beirnaert E, Hoefman S, Kolkman J, Vierboom M, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis. Arthr Res Ther. 2015;17:135. https://doi.org/10.1186/s13075-015-0651-0.
CAS
Article
Google Scholar
Palomo C, Mas V, Detalle L, Depla E, Cano O, Vazquez M, et al. Trivalency of a nanobody specific for the human respiratory syncytial virus fusion glycoprotein drastically enhances virus neutralization and impacts escape mutant selection. Antimicrob Agents Chemother. 2016;60(11):6498–509. https://doi.org/10.1128/AAC.00842-16.
CAS
Article
PubMed
PubMed Central
Google Scholar
Svecova D, Lubell MW, Casset-Semanaz F, Mackenzie H, Grenningloh R, Krueger JG. A randomized, double-blind, placebo-controlled phase 1 study of multiple ascending doses of subcutaneous M1095, an anti-interleukin 17A/F nanobody, in moderate-to-severe psoriasis. J Am Acad Dermatol. 2019;81(1):196–203. https://doi.org/10.1016/j.jaad.2019.03.056.
CAS
Article
PubMed
Google Scholar
De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M, Weening K, et al. Nanobody based dual specific CARs. Int J Mol Sci. 2018;19(2):1. https://doi.org/10.3390/ijms19020403.
CAS
Article
Google Scholar
Pereira J, Ottevaere I, Serruys B, Dejonckheere E, Bay-Jensen AC, Siebuhr AS, et al. Pharmacokinetic and pharmacodynamic modelling of the novel anti-ADAMTS-5 nanobody M6495 using the neo-epitope ARGS as a biomarker. Osteoarthr Cartil. 2018;26:S176. https://doi.org/10.1016/j.joca.2018.02.381.
Article
Google Scholar
Siebuhr A, Bay-Jensen AC, Thudium CT, Karsdal MA, Serruys B, Werkmann D, et al. The anti-ADAMTS-5 nanobody® M6495, protects against cartilage breakdown in cartilage and synovial joint tissue explant models. Osteoarthr Cartil. 2018;26:S187. https://doi.org/10.1016/j.joca.2018.02.402.
Article
Google Scholar
Sarker SA, Jakel M, Sultana S, Alam NH, Bardhan PK, Chisti MJ, et al. Anti-rotavirus protein reduces stool output in infants with diarrhea: a randomized placebo-controlled trial. Gastroenterology. 2013;145(4):740-8 e8. https://doi.org/10.1053/j.gastro.2013.06.053.
CAS
Article
Google Scholar