Skip to main content
Log in

Removal of Cr(VI) by magnetic iron oxide nanoparticles synthesized from extracellular polymeric substances of chromium resistant acid-tolerant bacterium Lysinibacillus sphaericus RTA-01

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Background

Extracellular polymeric substances (EPS) from Cr(VI) resistant acid-tolerant biofilm forming bacterium (CrRAtBb) Lysinibacillus sphaericus RTA-01 was used for synthesis of magnetic iron oxide nanoparticles (MIONPs) in removal of Cr(VI).

Methods

MIONPs synthesized in EPS matrix were characterized by UV-Vis, DLS, ATR-FTIR, XRD, FESEM, HRTEM and VSM. Primarily, the synthesis of MIONPs was established by the formation of black-colored precipitate through surface plasmon resonance (SPR) peak in between 330 and 450 nm.

Results

The size of the spherical MIONPs with diameter range 13.75–106 nm was confirmed by DLS, XRD and FESEM analysis. HRTEM study confirmed the size of the MIONPs in the range of 10–65 nm. Moreover, the EDX and SAED confirmed the purity and polycrystalline nature of MIONPs. The ATR-FTIR peaks below 1000 cm−1 designated the synthesis of MIONPs. Also, the magnetic property of MIONPs was confirmed for separation from the aqueous solution. MIONPs were further checked for the adsorption of Cr(VI) with initial concentration range of 50–200 mg L−1. An adsorption isotherm and thermodynamic study were also carried out and the experimental data was best fitted in Langmuir isotherm model with maximum adsorption percent of 1052.63 mg g−1 of Cr(VI). Post interaction with Cr(VI), the surface characteristic of MIONPs in EPS matrix was evaluated by zeta potential, EDX, ATR-FTIR and XRD.

Conclusion

This study ascertained the adsorption of Cr(VI) over EPS stabilized MIONPs whereas the zeta potential and XRD analysis confirmed the presence of reduced Cr(IV) on the adsorbent surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C. A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol. 1999;29(1):1–46.

    Article  CAS  Google Scholar 

  2. Smith WL, Gadd GM. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol. 2000;88(6):983–91.

    Article  CAS  Google Scholar 

  3. Avudainayagam S, Megharaj M, Owens G, Kookana RS, Chittleborough D, Naidu R. Chemistry of chromium in soils with emphasis on tannery waste sites. Rev Environ Contam Toxicol. 2003;178:53–91.

    CAS  Google Scholar 

  4. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC. Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. In: Heavy metals in water: presence, removal and safety. London: RSC Adv; 2014. p. 1–24.

    Google Scholar 

  5. Saha R, Nandi R, Saha B. Sources and toxicity of hexavalent chromium. J Coord Chem. 2011;64(10):1782–806.

    Article  CAS  Google Scholar 

  6. United states environmental protection agency (USEPA). Chromium compounds. 2016. https://www.epa.gov/sites/production/files/2016-09/documents/chromium-compounds.pdf

  7. Barakat MA. New trends in removing heavy metals from industrial wastewater. Arab J Chem. 2011;4(4):361–77.

    Article  CAS  Google Scholar 

  8. Abatenh E, Gizaw B, Tsegaye Z, Wassie M. Application of microorganisms in bioremediation-review. J Environ Microbiol. 2017;1(1):02–9.

    Google Scholar 

  9. Hard BC, Friedrich S, Babel W. Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol Res. 1997;152:65–73.

    Article  CAS  Google Scholar 

  10. Jang MH, Lim M, Hwang YS. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ Health Toxicol. 2014;29:e2014022.

    Article  Google Scholar 

  11. Shin J, Lee KY, Yeo T, Choi W. Facile one-pot transformation of Iron oxides from Fe2O3 nanoparticles to nanostructured Fe3O4@C Core-Shell composites via combustion waves. Sci Rep. 2016;6:21792.

    Article  CAS  Google Scholar 

  12. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci. 2010;156(1–2):1–13.

    Article  CAS  Google Scholar 

  13. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–99.

    Article  CAS  Google Scholar 

  14. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8(11):7278–308.

    Article  CAS  Google Scholar 

  15. Revati K, Pandey BD. Microbial synthesis of iron-based nanomaterials-a review. Bull Mater Sci. 2014;34(2):191–8.

    Google Scholar 

  16. Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices. 2014;2014:359316.

    Google Scholar 

  17. Nevin KP, Lovley DR. Mechanisms for accessing insoluble Fe (III) oxide during dissimilatory Fe (III) reduction by Geothrix fermentans. Appl Environ Microbiol. 2002;68(5):2294–9.

    Article  CAS  Google Scholar 

  18. Li W, Yu L, Zhou P, Zhu M. A Magnetospirillum strain WM-1 from a freshwater sediment with intracellular magnetosomes. World J Microbiol Biotechnol. 2007;23(10):1489–92.

    Article  CAS  Google Scholar 

  19. Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, et al. Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta. 2010;74(3):967–79.

    Article  CAS  Google Scholar 

  20. Sundaram PA, Augustine R, Kannan M. Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng. 2012;17(4):835–40.

    Article  CAS  Google Scholar 

  21. Weiner RM. Biopolymers from marine prokaryotes. Trends Biotechnol. 1997;15(10):390–4.

    Article  CAS  Google Scholar 

  22. Chapot-Chartier MP, Monnet V, De Vuyst L. Cell walls and exopolysaccharides of lactic acid bacteria. In: The 10th LAB symposium-thirty years research on lactic acid bacteria. Rotterdam: Media Labs; 2011. p. 37–59.

    Google Scholar 

  23. Mangwani N, Kumari S, Das S. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev. 2016;32(1–2):43–73.

    Article  CAS  Google Scholar 

  24. Sathiyanarayanan G, Dineshkumar K, Yang YH. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol. 2017;43(6):731–52.

    Article  CAS  Google Scholar 

  25. Srinath T, Verma T, Ramteke PW, Garg SK. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere. 2002;48(4):427–35.

    Article  CAS  Google Scholar 

  26. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. A method for carbohydrate estimation. Anal Chem. 1956;28(3):350–3.

    Article  CAS  Google Scholar 

  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1996;72:248–54.

    Article  Google Scholar 

  28. Lunge S, Singh S, Sinha A. Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater. 2014;356:21–31.

    Article  CAS  Google Scholar 

  29. Banerjee P, Barman SR, Mukhopadhayay A, Das P. Ultrasound assisted mixed azo dye adsorption by chitosan–graphene oxide nanocomposite. Chem Eng Res Des. 2017;117:43–56.

    Article  CAS  Google Scholar 

  30. Zewdu F, Amare M. Determination of the level of hexavalent, trivalent, and total chromium in the discharged effluent of Bahir Dar tannery using ICP-OES and UV–visible spectrometry. Cogent Chem. 2018;4(1):1534566.

    Article  CAS  Google Scholar 

  31. Kim D, Liu Y, Benhamou RI, Sanchez H, Simón-Soro Á, Li Y, et al. Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm. ISME J. 2018;12(6):1427–42.

    Article  CAS  Google Scholar 

  32. Solmaz KB, Ozcan Y, Mercan Dogan N, Bozkaya O, Ide S. Characterization and production of extracellular polysaccharides (EPS) by Bacillus Pseudomycoides U10. Environments. 2018;5(6):63.

    Article  Google Scholar 

  33. Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front Microbiol. 2018;9:2426.

    Article  Google Scholar 

  34. Vignesh V, Sathiyanarayanan G, Sathishkumar G, Parthiban K, Sathish-Kumar K, Thirumurugan R. Formulation of iron oxide nanoparticles using exopolysaccharide: evaluation of their antibacterial and anticancer activities. RSC Adv. 2015;5(35):27794–804.

    Article  CAS  Google Scholar 

  35. Raj R, Dalei K, Chakraborty J, Das S. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci. 2016;462:166–75.

    Article  CAS  Google Scholar 

  36. Rahman O, Mohapatra SC, Ahmad S. Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater Chem Phys. 2012;132(1):196–202.

    Article  CAS  Google Scholar 

  37. Li Q, Wang Q, Zhu J, Zhou S, Gan M, Jiang H, et al. Effect of extracellular polymeric substances on surface properties and attachment behavior of Acidithiobacillus ferrooxidans. Minerals. 2016;6:100.

    Article  CAS  Google Scholar 

  38. Inbaraj BS, Tsai TY, Chen BH. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Sci Technol Adv Mater. 2012;13:015002.

    Article  CAS  Google Scholar 

  39. Nuryono N, Rosiati NM, Rusdiarso B, Sakti SCW, Tanaka S. Coating of magnetite with mercapto modified rice hull ash silica in a one-pot process. SpringerPlus. 2014;3:515.

    Article  CAS  Google Scholar 

  40. Mukherjee D, Ghosh S, Majumdar S, Annapurna K. Green synthesis of α-Fe2O3 nanoparticles for arsenic(V) remediation with a novel aspect for sludge management. J Environ Chem Eng. 2016;4:639–50.

    Article  CAS  Google Scholar 

  41. Saritha A, Raju B, Rao DN, Roychowdhury A, Das D, Hussain KA. Facile green synthesis of iron oxide nanoparticles via solid-state thermolysis of a chiral, 3D anhydrous potassium tris (oxalato) ferrate (III) precursor. Adv Powder Technol. 2015;26:349–54.

    Article  CAS  Google Scholar 

  42. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng. 2015;13:84.

    Article  CAS  Google Scholar 

  43. Zubir NA, Da Costa JCD, Yacou C, Motuzas J, Zhang X. Physico-chemical properties of zinc partially substituted magnetite nanoparticles. AIP Conf Proc. 2016;1774:040002.

    Article  CAS  Google Scholar 

  44. Mahdavi M, Namvar F, Ahmad MB, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18(5):5954–64.

    Article  Google Scholar 

  45. Shalaby TI, Fikrt NM, Mohamed MM, El Kady MF. Preparation and characterization of iron oxide nanoparticles coated with chitosan for removal of cd (II) and Cr (VI) from aqueous solution. Water Sci Technol. 2014;70(6):1004–10.

    Article  CAS  Google Scholar 

  46. Es’haghi Z, Vafaeinezhad F, Hooshmand S. Green synthesis of magnetic iron nanoparticles coated by olive oil and verifying its efficiency in extraction of nickel from environmental samples via UV–vis spectrophotometry. Process Saf Environ. 2016;102:403–9.

    Article  CAS  Google Scholar 

  47. Burks T, Avila M, Akhtar F, Göthelid M, Lansåker PC, Toprak MS, et al. Studies on the adsorption of chromium (VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2014;425:36–43.

    Article  CAS  Google Scholar 

  48. Hu H, Wang Z, Pan L. Synthesis of monodisperse Fe3O4@ silica core–shell microspheres and their application for removal of heavy metal ions from water. J Alloys Compd. 2010;492(1–2):656–61.

    Article  CAS  Google Scholar 

  49. Huang ZN, Wang XL, Yang DS. Adsorption of Cr (VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci Eng. 2015;8(3):226–32.

    Article  Google Scholar 

  50. Paul ML, Samuel J, Das SB, Swaroop S, Chandrasekaran N, Mukherjee A. Studies on Cr(VI) removal from aqueous solutions by nanoalumina. Ind Eng Chem Res. 2012;51:15242–50.

    Article  CAS  Google Scholar 

  51. Martínez LJ, Muñoz-Bonilla A, Mazario E, Recio FJ, Palomares FJ, Herrasti P. Adsorption of chromium (VI) onto electrochemically obtained magnetite nanoparticles. Int J Environ Sci Technol. 2015;12:4017–24.

    Article  CAS  Google Scholar 

  52. Singh PN, Tiwary D, Sinha I. Improved removal of Cr (VI) by starch functionalized iron oxide nanoparticles. J Environ Chem Eng. 2014;2:2252–8.

    Article  CAS  Google Scholar 

  53. Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J Hazard Mater. 2009;166(2–3):821–9.

    Article  CAS  Google Scholar 

  54. López-Téllez G, Barrera-Díaz CE, Balderas-Hernández P, Roa-Morales G, Bilyeu B. Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J. 2011;173:480–5.

    Article  CAS  Google Scholar 

  55. Wang W, Wang X, Wang X, Yang L, Wu Z, Xia S, et al. Cr (VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. J Environ Sci. 2013;25:1726–35.

    Article  CAS  Google Scholar 

  56. Ozturk S, Aslim B, Suludere Z. Evaluation of chromium (VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol. 2009;100:5588–93.

    Article  CAS  Google Scholar 

  57. Luo C, Wang J, Jia P, Liu Y, An J, Cao B, et al. Hierarchically structured polyacrylonitrile nanofiber mat as highly efficient lead adsorbent for water treatment. Chem Eng J. 2015;262:775–84.

    Article  CAS  Google Scholar 

  58. Kuo CY, Wu CH, Wu JY. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci. 2008;327:308–15.

    Article  CAS  Google Scholar 

  59. Yuan P, Liu D, Fan M, Yang D, Zhu R, Ge F, et al. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J Hazard Mater. 2010;173:614–21.

    Article  CAS  Google Scholar 

  60. Hao T, Yang C, Rao X, Wang J, Niu C, Su X. Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr (VI). Appl Surf Sci. 2014;292:174–80.

    Article  CAS  Google Scholar 

  61. Fang XB, Fang ZQ, Tsang PKE, Cheng W, Yan XM, Zheng LC. Selective adsorption of Cr (VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor. Appl Surf Sci. 2014;314:655–62.

    Article  CAS  Google Scholar 

  62. Asuha S, Suyala B, Zhao S. Porous structure and Cr (VI) removal abilities of Fe3O4 prepared from Fe–urea complex. Mater Chem Phys. 2011;129:483–7.

    Article  CAS  Google Scholar 

  63. Liu W, Yang L, Xu S, Chen Y, Liu B, Li Z, et al. Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites. RSC Adv. 2018;8:15087–93.

    Article  CAS  Google Scholar 

  64. Lyu H, Tang J, Huang Y, Gai L, Zeng EY, Liber K, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem Eng J. 2017;322:516–24.

    Article  CAS  Google Scholar 

  65. Belattmania Z, Tahiri S, Zrid R, Reani A, Elatouani S, Loukili H, et al. Bioremoval of hexavalent chromium from aqueous solutions by the brown seaweed Dictyopteris polypodioides. Res J Environ Toxicol. 2015;9(5):218–30.

    Article  CAS  Google Scholar 

  66. Wang Y, Li Y, Zhao FJ. Bisorption of chromium (VI) from aqueous solutions by Sargassum thunbergii Kuntze. Biotechnol Biotechnol Equip. 2014;28(2):259–65.

    Article  CAS  Google Scholar 

  67. Ahmad A, Ghazi ZA, Saeed M, Ilyas M, Ahmad R, Khattak AM, et al. A comparative study of the removal of Cr (VI) from synthetic solution using natural biosorbents. New J Chem. 2017;41(19):10799–807.

    Article  CAS  Google Scholar 

  68. Yusuff AS. Optimization of adsorption of Cr (VI) from aqueous solution by Leucaena leucocephala seed shell activated carbon using design of experiment. Appl Water Sci. 2018;8(8):232–43.

    Article  CAS  Google Scholar 

  69. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 2011;5:69–78.

    Article  CAS  Google Scholar 

  70. Synytsya A, Novak M. Structural analysis of glucans. Ann Transl Med. 2014;2(2):17.

    Google Scholar 

  71. Mousavi S, Shahraki F, Aliabadi M, Haji A, Deuber F, Adlhart C. Surface enriched nanofiber mats for efficient adsorption of Cr (VI) inspired by nature. J Environ Chem Eng. 2019;7:102817.

    Article  CAS  Google Scholar 

  72. Ferreira T, Rodriguez J, Paez-Hernandez M, Guevara-Lara A, Barrado E, Hernandez P. Chromium (VI) removal from aqueous solution by magnetite coated by a polymeric ionic liquid-based adsorbent. Materials. 2017;10(5):502.

    Article  CAS  Google Scholar 

  73. Wang XL, Li Y, Huang J, Zhou YZ, Li BL, Liu DB. Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact. 2019;197:81–9.

    Article  CAS  Google Scholar 

  74. Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG. Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccharides with use of IR spectra deconvolution. Biopolym Orig Res Biomol. 2000;57:257–62.

    CAS  Google Scholar 

  75. Ravikumar KVG, Kumar D, Kumar G, Mrudula P, Natarajan C, Mukherjee A. Enhanced Cr(VI) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor. Ind Eng Chem Res. 2016;55:5973–82.

    Article  CAS  Google Scholar 

  76. Bankar AV, Kumar AR, Zinjarde SS. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater. 2009;170:487–94.

    Article  CAS  Google Scholar 

  77. Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J Hazard Mater. 2009;166:821–9.

    Article  CAS  Google Scholar 

  78. Egodawatte S, Datt A, Burns EA, Larsen SC. Chemical insight into the adsorption of chromium (III) on iron oxide/mesoporous silica nanocomposites. Langmuir. 2015;31:7553–62.

    Article  CAS  Google Scholar 

  79. Norouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M, Mohammadi-Moghadam F, et al. Preparation, characterization and Cr (VI) adsorption evaluation of NaOH-activated carbon produced from date press cake; an agro-industrial waste. Bioresour Technol. 2018;258:48–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the authorities of NIT, Rourkela and NER-BPMC, Department of Biotechnology (DBT), Government of India for providing facilities and financial support (Grant No. BT/483/NE/TBP/2013) respectively. XRD, Electromagnet and FESEM facilities were provided by Department of Physics and Ceramic Engineering of National Institute of Technology, Rourkela respectively. Thanks are due to the Centre for Nanoscience and Nanotechnology, Jamia Milia Islamia, New Delhi and S.N Bose National Centre for Basic Sciences, Kolkata for HRTEM-SAED and VSM facilities respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Das.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

High resolution transmission electron micrographs (HRTEM) of MIONPs at different magnifications (Fig. S1); RL value of Langmuir adsorption model calculated based on the Langmuir constant KL (Fig. S2); Freundlich plots for interaction of MIONPs incorporated functionalized EPS and Cr(VI) (Fig. S3); Dubinin–Radushkevich (D-R) Isotherms plots for interaction of MIONPs incorporated functionalized EPS and Cr(VI) (Fig. S4); Electron diffraction X-ray analysis of Cr(VI) interacted MIONPs incorporated functionalized EPS (Fig. S5). (DOC 2456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Sinha, S.K., Goud, V.V. et al. Removal of Cr(VI) by magnetic iron oxide nanoparticles synthesized from extracellular polymeric substances of chromium resistant acid-tolerant bacterium Lysinibacillus sphaericus RTA-01. J Environ Health Sci Engineer 17, 1001–1016 (2019). https://doi.org/10.1007/s40201-019-00415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00415-5

Keywords

Navigation