Skip to main content
Log in

Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Disinfection of water and wastewater strongly contributes to solving the problem of water shortage in arid/semi-arid areas; cheap and ecofriendly approaches have to be used to meet water quality standards. In the present study, a green synthesis of iron nanoparticles (INPs) under aerobic and anaerobic conditions via nitrate reductases (NAP/NAR) enzymes produced by Proteus mirabilis strain 10B were employed for this target. The biosynthesized INPs were characterized; UV-Vis spectroscopy revealed surface plasmon resonance at 410 (aerobic) and 265 nm (anaerobic). XRD indicated crystalline magnetite ((MNPs) aerobically synthesized) and zerovalent INPs (ZVINPs anaerobically synthesized). EDX demonstrated strong iron signal with atomic percentages 73.3% (MNPs) and 61.7% (ZVINPs). TEM micrographs illustrated tiny, spherical, periplasmic MNPs (1.44–1.92 nm) and cytoplasmic ZVINPs with 11.7–60.8 nm. Zeta potential recorded − 31.8 mV (ZVINPs) and − 66.4 mV (MNPs) affirming colloidal stability. Moreover, the disinfection power of INPs was evaluated for standards organisms and real water (fresh, sea and salt mine) and wastewater (municipal, agricultural and industrial) samples. The results reported that INPs displayed higher antagonistic effect than iron precursor, 700 and 850 μg/mL of MNPs and ZVINPs, respectively, was sufficient to show a drastic algicidal effect on algal growth. Both types of INPs demonstrated obvious dose-dependent antibiofilm efficiency. Due to their smaller size, MNPs were more efficient than ZVINPs at the suppression of microbial growth in all examined water samples. Overall, MNPs showed superior antagonistic activity, which promotes their exploitation in enhancing water/wastewater quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdeen M, Sabry S, Ghozlan H, El-Gendy A, Carpenter E (2016) Microbial-physical synthesis of Fe and Fe3O4 magnetic nanoparticles using Aspergillus niger YESM1 and supercritical condition of ethanol. J Nanomater 2016:1–7. https://doi.org/10.1155/2016/9174891

    Article  CAS  Google Scholar 

  • Adin A, Asano T (1998) The role of physical chemical treatment in wastewater reclamation and reuse. Water Sci Technol 37(10):79–80. https://doi.org/10.2166/wst.1998.0381

    Article  CAS  Google Scholar 

  • Aoki K, Shinke R, Nishira H (1981) Isolation and identification of respiratory nitrate reductase-producing bacteria from soli and production of enzyme. Agric Biol Chem 45(4):817–822. https://doi.org/10.1080/00021369.1981.10864630

    Article  CAS  Google Scholar 

  • Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki P (2017) Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci Rep 7(1):7672. https://doi.org/10.1038/s41598-017-03380-x

    Article  CAS  Google Scholar 

  • Baghani A, Mahvi A, Gholami M, Rastkari N, Delikhoon M (2016) One-pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions from aqueous solution: kinetic, isotherm and thermodynamic studies. J Environ Health Sci Eng 14(11):1–12. https://doi.org/10.1186/s40201-016-0252-0

    Article  CAS  Google Scholar 

  • Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int 2013:1–11. https://doi.org/10.1155/2013/647974

    Article  CAS  Google Scholar 

  • Butler C, Charnock J, Garner C, Thomson A, Ferguson S, Richardson D (2000) Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotroph. Biochem J 352(3):859–864. https://doi.org/10.1042/bj3520859

    Article  CAS  Google Scholar 

  • Carter J, Richardson D, Spiro S (1995) Isolation and characterization of a strain of Pseudomonas putida that can express periplasmic nitrate reductases. Arch Microbiol 163(3):159–166. https://doi.org/10.1007/BF00305348

    Article  CAS  Google Scholar 

  • D'Alessandro B, Lery L, von Krüger W, Lima A, Piccini C, Zunino P (2011) Proteomic analysis of Proteus mirabilis outer membrane proteins reveals differential expression in vivo vs. in vitro conditions. FEMS Immunol Med Microbiol 63(2):174–182. https://doi.org/10.1111/j.1574-695X.2011.00839.x

    Article  CAS  Google Scholar 

  • Drtil M, Nemeth P, Kucman K, Bodik I, Kasperek V (1995) Acidobasic balances in the course of heterotrophic denitrification. Water Res 29(5):1353–1360. https://doi.org/10.1016/0043-1354(94)00228-Y

    Article  CAS  Google Scholar 

  • Elblbesy M, Madbouly A, Hamdan T (2014) Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2(5):98–103. https://doi.org/10.11648/j.nano.20140205.12

    Article  Google Scholar 

  • Elkady MF, Farag S, Zaki S, Abu-Elreesh G, Abd- El-Haleem D (2011) Bacillus mojavensis strain 32A, a bioflocculant producing bacterium isolated from an Egyptian salt production pond. Bioresour Technol 102(17):8143–8151. https://doi.org/10.1016/j.biortech.2011.05.090

    Article  CAS  Google Scholar 

  • Elrashdy R, Abd-El-Haleem D (2005) Molecular analysis of cross-bacterial contamination detected during diagnosis HCV infection. J Appl Sci Environ Manag 9:5–10

    Google Scholar 

  • Eltarahony M, n.d.Zaki S, Kheiralla Z, Abd-El-haleem D (2015) Isolation, characterization and identification of nitrate reductase producing bacteria. Int J Recent Sci Res 7 (11): 7225-7233.

  • Fischer A, Schmitz M, Aichmayer B, Fratzl P, Faivre D (2011) Structural purity of magnetite nanoparticles in magnetotactic bacteria. J R Soc Interface 8(60):1011–1018. https://doi.org/10.1098/rsif.2010.0576

    Article  CAS  Google Scholar 

  • Flanagan D, Gregory L, Carter J, Karakas-Sen A, Richardson D, Spiro S (1999) Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol Lett 177(2):263–270. https://doi.org/10.1111/j.1574-6968.1999.tb13742.x

    Article  CAS  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. molecules 20(5):8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  Google Scholar 

  • Giordani R, Buc J, Cornish-Bowden A, Cárdenas M (1997) Kinetics of membrane-bound nitrate reductase A from Escherichia coli with analogues of physiological electron donors. Different reaction sites for menadiol and duroquinol. Eur J Biochem 250:567–577. https://doi.org/10.1111/j.1432-1033.1997.0567a.x

    Article  CAS  Google Scholar 

  • Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemistry 83:510–516. https://doi.org/10.1016/j.chemosphere.2010.12.059

    Article  CAS  Google Scholar 

  • Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem Eng Asp 374(1-3):1–8. https://doi.org/10.1016/j.colsurfa.2010.10.015

    Article  CAS  Google Scholar 

  • Gupta M, Gahlot R, Nigam C, Kumar V (2013) Biofilm: detection methods and correlation with antimicrobial resistance in Staphylococcus nation. J Labor Med 2(2):7–10

    Google Scholar 

  • Hari T, Montazer M (2014) TiO2/hematite or magnetite/Ag nanoparticles synthesized on polyester fabric at various temperatures producing different superparamagnetic, self-cleaning and antibacterial textiles. Sci Iran 21(6):2490–2498

    Google Scholar 

  • Hazeem L, Waheed F, Rashdan S, Bououdina M, Brunet L, Slomianny C, Boukherroub R, Elmeselmani W (2015) Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res 22(15):11728–11739. https://doi.org/10.1007/s11356-015-4370-5

    Article  CAS  Google Scholar 

  • He D, Hughes S, Vanden-Hehir S, Georgiev A, Altenbach K, Tarrant E, Logan Mackay C, Waldron K, Clarke D, Marles-Wright J (2016) Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. eLife 5

  • Ibrahem K, Salman J, Ali F (2014) Effect of titanium nanoparticles biosynthesis by Lactobacillus crispatuson urease, haemolysin, biofilm forming by some bacteria causing recurrent UTI in Iraqi women. Eur Sci J 10(9):324–338

    Google Scholar 

  • Iconaru S, Prodan A, Le Coustumer P, Predoi D (2013) Synthesis and antibacterial and antibiofilm activity of iron oxide glycerol nanoparticles obtained by coprecipitation method. J Chemother 2013:1–6. https://doi.org/10.1155/2013/412079

    Article  CAS  Google Scholar 

  • Jarockyte G, Daugelaite E, Stasys M, Statkute U, Poderys V, Tseng T, Hsu S, Karabanovas V, Rotomskis R (2016) Accumulation and toxicity of superparamagnetic iron oxide nanoparticles in cells and experimental animals. Int J Mol Sci 17(8):1193. https://doi.org/10.3390/ijms17081193

    Article  CAS  Google Scholar 

  • Jun Y (2011) Effect of protein crud extract on oxic/anoxic diauxic growth of a NAP-deficient mutant of Paracoccus pantatrophus. M.Sc. thesis. University of Florida

  • Kanagasubbulakshmi S, Kadirvelu K (2017) Green synthesis of iron oxide nanoparticles using lagenaria siceraria and evaluation of its antimicrobial activity. Defen Life Sci J 2(4):422–427. https://doi.org/10.14429/dlsj.2.12277

    Article  Google Scholar 

  • Karman S, Diah S, Gebeshuber I (2015) Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: a biomimetic resource management approach. Adv Mater Sci Eng 2015(3):1–21. https://doi.org/10.1155/2015/185071

    Article  CAS  Google Scholar 

  • Katepetch C, Rujiravanit R (2011) Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr Polym 86(1):162–170. https://doi.org/10.1016/j.carbpol.2011.04.024

    Article  CAS  Google Scholar 

  • Keat C, Aziz A, Eid A, Elmarzugi N (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2(47):1–11. https://doi.org/10.1186/s40643-015-0076-2

    Article  Google Scholar 

  • Kirchman DL, Hoffman KA, Weaver R, Hutchins DA (2003) Regulation of growth and energetics of a marine bacterium by nitrogen source and iron availability. Mar Ecol Prog Ser 250:291–296. https://doi.org/10.3354/meps250291

    Article  CAS  Google Scholar 

  • Klueglein N, Zeitvogel F, Stierhof Y, Floetenmeyer M, Konhauser K, Kappler A, Obst M (2013) Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl Environ Microbiol 80(3):1051–1061. https://doi.org/10.1128/AEM.03277-13

    Article  CAS  Google Scholar 

  • Krawczyk-Balska A, Lipiak M (2013) Critical role of a ferritin-like protein in the control of listeria monocytogenes cell envelope structure and stability under b-lactam pressure. PLoS One 8(10):1–10. https://doi.org/10.1371/journal.pone.0077808

    Article  CAS  Google Scholar 

  • Krutisova T, Hejna J, Pekar M (2015) Nanoparticles formed by self-assembly of negatively charged hyaluronan and cationic surfactant. NanoCon. 18:10–16

    Google Scholar 

  • Kumari R, Barsainy M, Singh D (2017) Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ Sci Pollut Res 24(5):4645–4654. https://doi.org/10.1007/s11356-016-8170-3

    Article  CAS  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems Soil. Biol Biochem 75:11–25 https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.soilbio.2014.03.021

    Article  CAS  Google Scholar 

  • Li Y, Katzmann E, Borg S, Schüler D (2012) The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in magnetospirillum gryphiswaldense. J Bacteriol 194(18):4847–4856. https://doi.org/10.1128/JB.00903-12

  • Lin I, Lok C, Che C (2014) Biosynthesis of silver nanoparticles from silver (I) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem Sci 5(8):3144–3150. https://doi.org/10.1039/C4SC00138A

    Article  CAS  Google Scholar 

  • Ma Z, David F, Giedroc P (2009) Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem Rev 109(10):4644–4681. https://doi.org/10.1021/cr900077w

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Bin Ahmad M, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum). Aqueous Extract. Molecules 18(5):5954–5964. https://doi.org/10.3390/molecules18055954

    Article  Google Scholar 

  • Maheswari KC, Reddy PS (2016) Green synthesis of magnetite nanoparticles through leaf extract of Azadirachta indica. J Nanosci Technol 2(1):189–191

    Google Scholar 

  • Mateus G, Paludo M, Santos T, Silva M, Nishi L, Fagundes-Klen M, Gomes R, Bergamasco R (2018) Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. J Environ Chem Eng 6(4):4084–4092. https://doi.org/10.1016/j.jece.2018.05.050

    Article  CAS  Google Scholar 

  • Minaeian S, Shahverdi R, Nohi A, Shahverdi H (2008) Extracellular biosynthesis of silver nanoparticles by some bacteria. J Sci I AU (JSIAU) 17:1–4

    Google Scholar 

  • Miot J, Remusat L, Duprat E, Gonzalez A, Pont S (2015) Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer. Front Microbiol 6(1-13). https://doi.org/10.3389/fmicb.2015.00879

  • Nabawy A, Hassan A, Sayed El-Ahl R, Refai M (2014) Effect of metal nanoparticles in comparison with commercial antifungal feed additives on the growth of Aspergillus flavus and aflatoxin B1 production. J Glob Biosci 3(6):954–971

    Google Scholar 

  • Nathan M, Suganya R (2018) Investigation on the morphological and magnetic properties of Fe3O4 nanoparticles for biomedical applications. Int J Pure Appl Math 119(12):6515–6524

    Google Scholar 

  • Nygren C, Eberhardt U, Karlsson M, Parrent J, Lindahl B, Taylor A (2008) Growth on nitrate and occurrence of nitrate reductase encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol 180(4):875–889. https://doi.org/10.1111/j.1469-8137.2008.02618.x

    Article  CAS  Google Scholar 

  • Pal S (2014) Antimicrobial activity of iron oxide nanoparticles M.Sc. in life science—National Institute of technology Roukela, Orissa, Indi.

  • Pande N, Jaspal D, Malviya A, Jayachandran V (2015) Green route synthesis of iron nanoparticles and antibacterial studies. Int J Adv Sci Eng Technol 3(2):98–102

    Google Scholar 

  • Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 458(7242):1191–1195. https://doi.org/10.1038/nature07830

    Article  CAS  Google Scholar 

  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2010) Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol 1(5):071–079

    Google Scholar 

  • Prodan A, Iconaru S, Chifiriuc C, Bleotu C, Ciobanu C, Motelica-Heino M, Sizaret S, Predoi D (2013) Magnetic properties and biological activity evaluation of iron oxide nanoparticles. J Nanomater 2013:1–7. https://doi.org/10.1155/2013/893970

    Article  CAS  Google Scholar 

  • Pulit-Prociak LJ, Banach M (2016) Silver nanoparticles a material of the future? Open Chemist 14(1):76–91. https://doi.org/10.1515/chem-2016-0005

    Article  CAS  Google Scholar 

  • Rafi M, Ahmed K, PremNazeer K, Kumar D (2015) Antibacterial activity of iron oxide nanoparticles on polysaccharide templates: synthesis, characterization and magnetic studies Malays. Polym J 10(1):16–22

    Google Scholar 

  • Ramanathan R, Field M, O’Mullane A, Smooker P, Bhargava S, Bansal B (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscal 5(6):2300–2306. https://doi.org/10.1039/c2nr32887a

    Article  CAS  Google Scholar 

  • Rashmi S, Madhu G, Kittura A, Suresh R (2013) Synthesis, characterization and application of zero valent iron nanoparticles for the removal of toxic metal hexavalent chromium [Cr(VI)] from aqueous solution. Int J Curr Eng Technol:37–42

  • Robin G, Namasivaym S, Raju S (2013) Synthesis, characterization and antibacterial activity of chitosan stabilized nano zero valant iron. Bull Pharm Med Sci 1(1):7–11

    Google Scholar 

  • Roussel-Delif L, Tarnawski S, Hamelin J, Philippot L, Aragno M, Fromin N (2005) Frequency and diversity of nitrate reductase genes among nitrate-dissimilating Pseudomonas in the rhizosphere of perennial grasses grown in field conditions. Microb Ecol 49(1):63–72. https://doi.org/10.1007/s00248-003-0228-3

    Article  CAS  Google Scholar 

  • Ruiz-Torres C, Araujo-Martínez R, Martínez-Castañ ón G, Morales-Sánchez J, Guajardo-Pacheco J, González-Hernández J, Lee T-J, Shin H-S, Hwang Y, Ruiz F (2017) Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition. Chem Eng J 336:112–122. https://doi.org/10.1016/j.cej.2017.11.047

    Article  CAS  Google Scholar 

  • Saini R, Saini S, Sharma S (2010) Nanotechnology: the future medicine. J Cutan Aesthet Surg 3(1):32–33. https://doi.org/10.4103/0974-2077.63301

    Article  Google Scholar 

  • SA-Water, Restricted wastewater acceptance standards, Government of South Australia, Issued 01/03/2018

  • Shakoori F, Butt A, Ali N, Muhammad Z, Abdul Rehman T, Shakoori A (2012) Optimization of fermentation media for enhanced amino acids production by bacteria isolated from natural sources. Pak J Zool 44:1145–1157

    CAS  Google Scholar 

  • Siddiqui R, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B (1993) Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175(18):5867–5876. https://doi.org/10.1128/jb.175.18

    Article  CAS  Google Scholar 

  • Siemieniec J, Kafarski P, Plucinski P (2013) Hydrophosphonylation of nanoparticle Schiff bases as a mean for preparation of aminophosphonate-functionalized nanoparticles. molecules. 18(7):8473–8484. https://doi.org/10.3390/molecules18078473

    Article  CAS  Google Scholar 

  • Sravanthi M, Kumar M, Ravichandra M, Vasu G, Hemalatha K (2016) Green synthesis and characterization of iron oxide nanoparticles using Wrightia tinctoria leaf extract and their antibacterial studies. Inton J Curr Res Acad Rev 4(8):30–44. https://doi.org/10.20546/ijcrar.2016.408.003

    Article  CAS  Google Scholar 

  • Straub L, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34(3):181–186. https://doi.org/10.1111/j.1574-6941.2001.tb00768.x

    Article  CAS  Google Scholar 

  • Sugiyama N, Minami N, Ishii Y, Amano F (2013) Inhibition of Lon protease by bacterial lipopolisaccharide (LPS) though inhibition of ATPase. Adv Biosci Biotechnol 4:590–598

    Article  CAS  Google Scholar 

  • Supattarasakda K, Petcharoen K, Permpool T, Sirivat A, Lerdwijitjarud W (2013) Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technol 249:353–359. https://doi.org/10.1016/j.powtec.2013.08.042

    Article  CAS  Google Scholar 

  • Symeonidis A, Marangos M (2012) Iron and microbial growth insight and control of infectious diseases global. scenario. 16:289–330. https://doi.org/10.5772/34760

    Article  Google Scholar 

  • Tran N, Webster T (2011) Effects of magnetite and maghemite nanoparticles on bone cell and Staphylococcus aureus functions. Technol Innov 13(1):39–50. https://doi.org/10.3727/194982411X13003853539876

    Article  CAS  Google Scholar 

  • Tran Q, Nguyen V, Le A (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4(3):1–2. https://doi.org/10.1088/2043-6254/aad12b

    Article  CAS  Google Scholar 

  • Ur Rahman S, Qureshi M, Sultana K, Rehman W, Yaqoob-Khan M, Asif M, Farooq M, Sultana N (2017) Single step growth of iron oxide nanoparticles and their use as glucose biosensor. Results Phys 7:4451–4456. https://doi.org/10.1016/j.rinp.2017.11.001

    Article  Google Scholar 

  • Van Niel E, Robertson L, Cox R, Kuenen J (1992) Inhibition of denitrification and oxygen utilization by Thiosphaera pantotropha. J Gen Appl Microbiol 38(6):553–558. https://doi.org/10.2323/jgam.38.553

    Article  Google Scholar 

  • World Health Organization (WHO) Compendium of standards for wastewater reuse in the Eastern Mediterranean Region, WHO-EM/CEH/142/E 2006.

  • Yang L, Barken K, Skindersoe M, Christensen A, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(pt-5):1318–1328. https://doi.org/10.1099/mic.0.2006/004911-0

    Article  CAS  Google Scholar 

  • Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impact 15(1):39–48. https://doi.org/10.1039/C2EM30655G

    Article  CAS  Google Scholar 

  • Yew Y, Shameli K, Miyake M, Khairudin N, Mohamad S, Hara H, Nordin M, Lee K (2017) An eco-friendly means of biosynthesis of superparamagnetic magnetite nanoparticles via marine polymer. IEEE Trans Nanotechnol 16(6):1047–1052. https://doi.org/10.1109/TNANO.2017.2747088

    Article  CAS  Google Scholar 

  • Yew Y, Shameli K, Miyake M, Khairudin N, Ahmad S, Naiki T, Lee K (2018) Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review Arab. J Chemother. https://doi.org/10.1016/j.arabjc.2018.04.013

  • Zaki S, Eltarahony M, Elkady M, Abd-El-Haleem D (2014) The use of bioflocculant and bioflocculant-producing Bacillus mojavensis strain 32A to synthesize silver nanoparticles. J Nanomater 2014:1–7. https://doi.org/10.1155/2014/431089

    Article  CAS  Google Scholar 

  • Zhang S, Du C, Wang Z, Han X, Zhang K, Liu L (2013) Reduced cytotoxicity of silver ions to mammalian cells at high concentration due to the formation of silver chloride. Toxicol in Vitro 27(2):739–744. https://doi.org/10.1016/j.tiv.2012.12.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt. Also, the authors gratefully thank Eng. Ayman Kamal for his efforts in imaging the samples by electron microscopy.

Conflict of interests

The authors declare that they have no conflicts of interests

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar A. Zaki.

Additional information

Responsible editor: Bingcai Pan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, S.A., Eltarahony, M.M. & Abd-El-Haleem, D.A. Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B. Environ Sci Pollut Res 26, 23661–23678 (2019). https://doi.org/10.1007/s11356-019-05479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05479-2

Keywords

Navigation