Skip to main content
Log in

Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Optimization of grain boundary engineering (GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82 N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion (IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice (CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h; there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Watanabe, Res. Mech. 11, 47 (1984)

    CAS  Google Scholar 

  2. G. Palumbo, P.J. King, K.T. Aust, U. Erb, P.C. Lichtenberger, Scr. Metall. Mater. 25, 1775 (1991)

    Article  CAS  Google Scholar 

  3. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Acta Mater. 50, 2331 (2002)

    Article  CAS  Google Scholar 

  4. M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Mater. 54, 5179 (2006)

    Article  CAS  Google Scholar 

  5. C.L. Hu, S. Xia, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen, N. Wang, Corros. Sci. 53, 1880 (2011)

    Article  CAS  Google Scholar 

  6. K. Kurihara, H. Kokawa, S. Sato, Y.S. Sato, H.T. Fujii, M. Kawai, J. Mater. Sci. 46, 4270 (2011)

    Article  CAS  Google Scholar 

  7. S. Xia, H. Li, T.G. Liu, B.X. Zhou, J. Nucl. Mater. 416, 303 (2011)

    Article  CAS  Google Scholar 

  8. S.H. Kim, U. Erb, K.T. Aust, G. Palumbo, Scr. Mater. 44, 835 (2001)

    Article  CAS  Google Scholar 

  9. F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, X.W. Li, Corros. Sci. 107, 49 (2016)

    Article  CAS  Google Scholar 

  10. T. Watanabe, S. Tsurekawa, Mater. Sci. Eng. A 387–389, 447 (2004)

    Article  CAS  Google Scholar 

  11. A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, V.K. Vasudevan, Acta Mater. 113, 180 (2016)

    Article  CAS  Google Scholar 

  12. S. Kobayashi, M. Hirata, S. Tsurekawa, T. Watanabe, Procedia Eng. 10, 112 (2011)

    Article  CAS  Google Scholar 

  13. Z. Zhuo, S. Xia, Q. Bai, B.X. Zhou, J. Mater. Sci. 53, 2844 (2018)

    Article  CAS  Google Scholar 

  14. W.Z. Jin, S. Yang, H. Kokawa, Z.J. Wang, Y.S. Sato, J. Mater. Sci. Technol. 23, 785 (2007)

    CAS  Google Scholar 

  15. J.W. Simmons, Mater. Sci. Eng. A 207, 159 (1996)

    Article  Google Scholar 

  16. H. Hänninen, J. Romu, R. Ilola, J. Tervo, A. Laitinen, J. Mater. Process. Technol. 117, 424 (2001)

    Article  Google Scholar 

  17. M.G. Pujar, U.K. Mudali, S.S. Singh, Corros. Sci. 53, 4178 (2011)

    Article  CAS  Google Scholar 

  18. H. Baba, T. Kodama, Y. Katada, Corros. Sci. 44, 2393 (2002)

    Article  CAS  Google Scholar 

  19. F. Shi, Y. Qi, C.M. Liu, J. Mater. Sci. Technol. 27, 1125 (2011)

    Article  CAS  Google Scholar 

  20. F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, J. Iron Steel Res. Int. 15, 72 (2008)

    Article  CAS  Google Scholar 

  21. F. Vanderschaeve, R. Taillard, J. Foct, J. Mater. Sci. 30, 6035 (1995)

    Article  CAS  Google Scholar 

  22. O. Makoto, H. Kazuo, K. Yasuyuki, S. Masayuki, T. Susumu, ISIJ Int. 42, 1391 (2002)

    Article  Google Scholar 

  23. H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, Y. Yang, Int. J. Min. Met. Mater. 16, 654 (2009)

    CAS  Google Scholar 

  24. R. Beneke, R.F. Sandenbergh, Corros. Sci. 29, 543 (1989)

    Article  CAS  Google Scholar 

  25. Y.S. Yoon, H.Y. Ha, T.H. Lee, S. Kim, Corros. Sci. 80, 28 (2014)

    Article  CAS  Google Scholar 

  26. K. Alvarez, S.K. Hyun, H. Tsuchiya, S. Fujimoto, H. Nakajima, Corros. Sci. 50, 183 (2008)

    Article  CAS  Google Scholar 

  27. H. Kokawa, W.Z. Jin, Z.J. Wang, M. Michiuchi, Y.S. Sato, W. Dong, Y. Katada, Mater. Sci. Forum 539–543, 4962 (2007)

    Article  Google Scholar 

  28. F. Shi, X.W. Li, Y.T. Hu, C. Su, C.M. Liu, Acta Metall. Sin. (Engl. Lett.) 26, 497 (2013)

    Article  CAS  Google Scholar 

  29. H.B. Li, Z.H. Jiang, Y. Yang, Y. Cao, Z.R. Zhang, Int. J. Min. Met. Mater. 16, 517 (2009)

    Article  CAS  Google Scholar 

  30. H.Y. Ha, T.H. Lee, J.H. Bae, D.W. Chun, Metals 8, 1 (2018)

    Article  CAS  Google Scholar 

  31. D.G. Brandon, Acta Metall. 14, 1479 (1966)

    Article  CAS  Google Scholar 

  32. F. Shi, X.W. Li, Y. Qi, C.M. Liu, Steel Res. Int. 84, 1034 (2013)

    CAS  Google Scholar 

  33. J.B. Lee, Corrosion 39, 469 (1983)

    Article  Google Scholar 

  34. S. Tokita, H. Kokawa, Y.S. Sato, H.T. Fujii, Mater. Charact. 131, 31 (2017)

    Article  CAS  Google Scholar 

  35. V. Randle, Acta Metall. Mater. 42, 1769 (1994)

    Article  CAS  Google Scholar 

  36. B.W. Reed, M. Kumar, Scr. Mater. 54, 1029 (2006)

    Article  CAS  Google Scholar 

  37. Q.Y. Li, J.R. Cahoon, N.L. Richards, Mater. Sci. Eng. A 527, 263 (2009)

    Article  CAS  Google Scholar 

  38. W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, T. Baudin, Mater. Sci. Eng. A 589, 112 (2014)

    Article  CAS  Google Scholar 

  39. X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Mater. Sci. Eng. A 765, 138299 (2019)

    Article  CAS  Google Scholar 

  40. J. Kim, M. Kwon, B.C. De Cooman, Acta Mater. 141, 444 (2017)

    Article  CAS  Google Scholar 

  41. X.W. Li, X.M. Wu, Z.G. Wang, Y. Umakoshi, Metall. Mater. Trans. A 34, 307 (2003)

    Article  Google Scholar 

  42. Q.X. Dai, A.D. Wang, X.N. Cheng, J. Iron Steel Res. 14, 34 (2002)

    CAS  Google Scholar 

  43. V. Gavriljuk, Yu. Petrov, B. Shanina, Scr. Mater. 55, 537 (2006)

    Article  CAS  Google Scholar 

  44. R. Jones, V. Randle, Mater. Sci. Eng. A 527, 4275 (2010)

    Article  CAS  Google Scholar 

  45. X.Y. Fang, Ph.D. thesis, Shanghai University (2008)

  46. M.S. Laws, P.J. Goodhew, Acta Metall. Mater. 39, 1525 (1991)

    Article  CAS  Google Scholar 

  47. V. Randle, Scr. Mater. 54, 1011 (2006)

    Article  CAS  Google Scholar 

  48. C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, M.L. Taheri, Acta Mater. 144, 281 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51871048 and 51571058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wu Li.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Gao, RH., Guan, XJ. et al. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 33, 789–798 (2020). https://doi.org/10.1007/s40195-020-01000-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01000-8

Keywords

Navigation