Skip to main content
Log in

Grain boundary engineering of titanium-stabilized 321 austenitic stainless steel

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain boundary engineering (GBE) primarily aims to prevent the initiation and propagation of intergranular degradation along grain boundaries by frequent introduction of coincidence site lattice (CSL) boundaries into the grain boundary networks in materials. It has been reported that GBE is effective to prevent intergranular corrosion due to sensitization in unstabilized 304 and 316 austenitic stainless steels, but the effect of GBE on intergranular corrosion in stabilized austenitic stainless steels has not been clarified. In this study, a twin-induced GBE utilizing optimized thermomechanical processing with small pre-strain and subsequent annealing was applied to introduce very high frequencies of CSL boundaries into a titanium-stabilized 321 austenitic stainless steel. The resulting steel showed much higher resistance to intergranular corrosion after sensitization subsequent to carbon re-dissolution heat treatment during the ferric sulfate–sulfuric acid test than the as-received one. The high CSL frequency resulted in a very low percolation probability of random boundary networks in the over-threshold region and remarkable suppression of intergranular corrosion during GBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkhard E (1984) Welding metallurgy of stainless steels. Springer, Wien

    Google Scholar 

  2. Le Coze J, Biscondi M (1974) Can Metall Quart 13:59

    CAS  Google Scholar 

  3. Kokawa H, Watanabe T, Karashima S (1981) Philos Mag A 44:1239

    Article  CAS  Google Scholar 

  4. Qian XR, Chou YT (1982) Philos Mag A 45:1075

    Article  CAS  Google Scholar 

  5. Kokawa H, Lee CH, North TH (1991) Metall Trans A 22:1627

    Article  Google Scholar 

  6. Kokawa H, Shimada M, Sato YS (2000) JOM 52(7):34

    Article  CAS  Google Scholar 

  7. Watanabe T (1984) Res Mech 11:47

    CAS  Google Scholar 

  8. Palumbo G, Lehockey EM, Lin P (1998) JOM 50(2):40

    Article  CAS  Google Scholar 

  9. Spigarelli S, Cabibbo M, Evangelista E, Palumbo G (2003) Mater Sci Eng A 352:93

    Article  Google Scholar 

  10. Qian M, Lippold JC (2003) Acta Mater 51:3351

    Article  CAS  Google Scholar 

  11. Randle V, Davies H (2002) Metall Mater Trans A 33:1853

    Article  Google Scholar 

  12. Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Acta Mater 50:2331

    Article  CAS  Google Scholar 

  13. Bi HY, Kokawa H, Wang ZJ, Shimada M, Sato YS (2003) Scripta Mater 49:219

    Article  CAS  Google Scholar 

  14. Kokawa H, Shimada M, Wang ZJ, Sato YS, Michiuchi M (2004) Key Eng Mater 261–263:1005

    Article  Google Scholar 

  15. Kokawa H (2005) J Mater Sci 40:927. doi:10.1007/s10853-005-6511-6

    Article  CAS  Google Scholar 

  16. Michiuchi M, Kokawa H, Wang ZJ, Sato YS, Sakai K (2006) Acta Mater 54:5179

    Article  CAS  Google Scholar 

  17. Kokawa H, Shimada M, Michiuchi M, Wang ZJ, Sato YS (2007) Acta Mater 55:5401

    Article  CAS  Google Scholar 

  18. Jin WZ, Yang S, Kokawa H, Wang ZJ, Sato YS (2007) J Mater Sci Technol 23:785

    CAS  Google Scholar 

  19. Yang S, Wang ZJ, Kokawa H, Sato YS (2007) J Mater Sci 42:847. doi:10.1007/s10853-006-0063-2

    Article  CAS  Google Scholar 

  20. Xia SA, Zhou BX, Chen WJ (2008) J Mater Sci 43:2990. doi:10.1007/s10853-007-2164-y

    Article  CAS  Google Scholar 

  21. Krupp U (2008) J Mater Sci 43:3908. doi:10.1007/s10853-007-2363-6

    Article  CAS  Google Scholar 

  22. Jin WZ, Kokawa H, Wang ZJ, Sato YS, Hara N (2010) ISIJ Intern 50:476

    Article  CAS  Google Scholar 

  23. Randle V (2004) Acta Mater 52:4067

    Article  CAS  Google Scholar 

  24. Brandon DG (1966) Acta Metall 14:1479

    Article  CAS  Google Scholar 

  25. Kokawa H, Watanabe T, Karashima S (1987) Scripta Metall 21:839

    Article  Google Scholar 

  26. Lee JB (1983) Corrosion 39:469

    Google Scholar 

  27. Fullman RL, Fisher JC (1951) J Appl Phys 22:1350

    Article  CAS  Google Scholar 

  28. Kokawa H, Watanabe T, Karashima S (1983) J Mater Sci 18:1183. doi:10.1007/BF00551977

    Article  CAS  Google Scholar 

  29. Pumphrey PH, Gleiter H (1974) Philos Mag 30:593

    Article  CAS  Google Scholar 

  30. Kokawa H, Watanabe T, Karashima S (1983) Scripta Metall 17:1155

    Article  CAS  Google Scholar 

  31. Schuh CA, Kumar M, King WE (2003) Acta Mater 51:700

    Google Scholar 

  32. Schuh CA, Minich RW, Kumar M (2003) Philos Mag 83:711

    Article  CAS  Google Scholar 

  33. Wells DB, Stewart J, Herbert AW, Scott PM, Williams DE (1989) Corrosion 45:649

    CAS  Google Scholar 

  34. Tsurekawa S, Nakamichi S, Watanabe T (2006) Acta Mater 54:3617

    Article  CAS  Google Scholar 

  35. Miyazawa K, Iwasaki Y, Ito K, Ishida Y (1996) Acta Crystallogr A 52:787

    Article  Google Scholar 

  36. Frary M, Schuh CA (2005) Philos Mag 85:1123

    Article  CAS  Google Scholar 

  37. Randle V (2006) Scripta Mater 54:1011

    Article  CAS  Google Scholar 

  38. Randle V, Jones R (2009) Mater Sci Eng A 524:134

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 21246104), a Grant-in-Aid for Science Research (S) (No. 19106013), a Grant-in-Aid for Science Research (S) (No. 19106017), and a grant from the Global COE Program “Materials Integration (International Center of Education and Research), Tohoku University,” MEXT, Japan. The authors wish to thank to Mr. E. Nagashima and Mr. A. Honda for their technical assistance and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, K., Kokawa, H., Sato, S. et al. Grain boundary engineering of titanium-stabilized 321 austenitic stainless steel. J Mater Sci 46, 4270–4275 (2011). https://doi.org/10.1007/s10853-010-5244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5244-3

Keywords

Navigation