Skip to main content
Log in

Improving Intergranular Stress Corrosion Cracking Resistance in a Fe–18Cr–17Mn–2Mo–0.85N Austenitic Stainless Steel Through Grain Boundary Character Distribution Optimization

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The grain boundary character distribution (GBCD) optimization and its effect on the intergranular stress corrosion cracking (IGSCC) resistance in a cold-rolled and subsequently annealed Fe–18Cr–17Mn–2Mo–0.85N high-nitrogen nickel-free austenitic stainless steel were systematically explored. The results show that stacking faults and planar slip bands appearing at the right amount of deformation (lower than 10%) are beneficial cold-rolled microstructures to the GBCD optimization. The proportion of special boundaries gradually increases in the subsequent stages of recrystallization and grain growth, accompanying with the growth of twin-related domain in the experimental steel. In this way, the fraction of low Σ coincidence site lattice (CSL) boundaries can reach as high as 82.85% for the specimen cold-rolled by 5% and then annealed at 1423 K for 72 h. After GBCD optimization, low Σ CSL boundaries and the special triple junctions (J2, J3) of high proportion can greatly hinder the nitride precipitation along grain boundaries and enhance the capability for intergranular crack arrest, thus improving the IGSCC resistance of the experimental steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Gao, J.B. Tan, X.Q. Wu, S. Xia, Corros. Sci. 152, 190 (2019)

    Article  CAS  Google Scholar 

  2. T. Watanabe, J. Mater. Sci. 46, 4095 (2011)

    Article  CAS  Google Scholar 

  3. K. Deepak, S. Mandal, C.N. Athreya, D.I. Kim, B.D. Boer, V.S. Sarma, Corros. Sci. 106, 293 (2016)

    Article  CAS  Google Scholar 

  4. G. Palumbo, P.J. King, K.T. Aust, U. Erb, P.C. Lichtenberger, Scr. Metall. Mater. 25, 1775 (1991)

    Article  CAS  Google Scholar 

  5. T. Watanabe, S. Tsurekawa, Mater. Sci. Eng. A 387, 447 (2004)

    Article  Google Scholar 

  6. T. Watanabe, Res. Mech. 11, 47 (1984)

    CAS  Google Scholar 

  7. C.L. Hu, S. Xia, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen, N. Wang, Corros. Sci. 53, 1880 (2011)

    Article  CAS  Google Scholar 

  8. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Acta Mater. 50, 2331 (2002)

    Article  CAS  Google Scholar 

  9. H. Kokawa, M. Shimada, M. Michiuchi, Z.J. Wang, Y.S. Sato, Acta Mater. 55, 5401 (2007)

    Article  CAS  Google Scholar 

  10. M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Mater. 54, 5179 (2006)

    Article  CAS  Google Scholar 

  11. E.A. West, G.S. Was, J. Nucl. Mater. 392, 264 (2009)

    Article  CAS  Google Scholar 

  12. T.G. Liu, S. Xia, Q. Bai, B.X. Zhou, L.F. Zhang, Y.H. Lu, T. Shoji, J. Nucl. Mater. 498, 290 (2018)

    Article  CAS  Google Scholar 

  13. T.G. Liu, S. Xia, D.H. Du, Q. Bai, L.F. Zhang, Y.H. Lu, Mater. Lett. 234, 201 (2019)

    Article  CAS  Google Scholar 

  14. P. Lin, G. Palumbo, U. Erb, K.T. Aust, Scr. Mater. 33, 1387 (1995)

    Article  CAS  Google Scholar 

  15. A. Telang, A.S. Gill, D. Tammana, X.S. Wen, M. Kumar, S. Teysseyre, S.R. Mannava, D. Qian, V.K. Vasudevan, Mater. Sci. Eng. A 648, 280 (2015)

    Article  CAS  Google Scholar 

  16. E.M. Lehockey, A.M. Brennenstuhl, I. Thompson, Corros. Sci. 46, 2383 (2004)

    Article  CAS  Google Scholar 

  17. V.Y. Gertsman, S.M. Bruemmer, Acta Mater. 49, 1589 (2001)

    Article  CAS  Google Scholar 

  18. A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, V.K. Vasudevan, Acta Mater. 113, 180 (2016)

    Article  CAS  Google Scholar 

  19. S. Xia, H. Li, T.G. Liu, B.X. Zhou, J. Nucl. Mater. 416, 303 (2011)

    Article  CAS  Google Scholar 

  20. H.Y. Ha, T.H. Lee, C.S. Oh, S.J. Kim, Scr. Mater. 61, 121 (2009)

    Article  CAS  Google Scholar 

  21. J.W. Simmons, Mater. Sci. Eng. A 207, 159 (1996)

    Article  Google Scholar 

  22. Y.S. Yoon, H.Y. Ha, T.H. Lee, S. Kim, Corros. Sci. 80, 28 (2014)

    Article  CAS  Google Scholar 

  23. H. Baba, T. Kodama, Y. Katada, Corros. Sci. 44, 2393 (2002)

    Article  CAS  Google Scholar 

  24. I. Olefjord, L. Wegrelius, Corros. Sci. 38, 1203 (1996)

    Article  CAS  Google Scholar 

  25. M.G. Pujar, U.K. Mudali, S.S. Singh, Corros. Sci. 53, 4178 (2011)

    Article  CAS  Google Scholar 

  26. M. Metikoš-Huković, R. Babić, Z. Grubač, Ž Petrović, N. Lajci, Corros. Sci. 53, 2176 (2011)

    Article  Google Scholar 

  27. H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, Y. Yang, Int. J. Min. Met. Mater. 16, 654 (2009)

    CAS  Google Scholar 

  28. M. Ogawa, K. Hiraoka, Y. Katada, M. Sagara, S. Tsukamoto, ISIJ Int. 42, 1391 (2002)

    Article  CAS  Google Scholar 

  29. F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, J. Iron Steel Res. Int. 15, 72 (2008)

    Article  CAS  Google Scholar 

  30. F. Shi, Y. Qi, C.M. Liu, J. Mater. Sci. Technol. 27, 1125 (2011)

    Article  CAS  Google Scholar 

  31. H. Kokawa, W.Z. Jin, Z.J. Wang, M. Michiuchi, Y.S. Sato, W. Dong, Y. Katada, Mater. Sci. Forum 539, 4962 (2007)

    Article  Google Scholar 

  32. F. Shi, R.H. Gao, X.J. Guan, C.M. Liu, X.W. Li, Acta Metall. Sin. -Engl. Lett. 33, 789 (2020)

    Article  CAS  Google Scholar 

  33. F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, X.W. Li, Corros. Sci. 107, 49 (2016)

    Article  CAS  Google Scholar 

  34. F. Shi, X.W. Li, Y.T. Hu, C. Su, C.M. Liu, Acta Metall. Sin. -Engl. Lett. 26, 497 (2013)

    Article  CAS  Google Scholar 

  35. D.G. Brandon, Acta Metall. 14, 1479 (1966)

    Article  CAS  Google Scholar 

  36. X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Mater. Sci. Eng. A 765, 138299 (2019)

    Article  CAS  Google Scholar 

  37. X.J. Guan, F. Shi, Z.P. Jia, X.W. Li, Mater. Charact. 170, 110689 (2020)

    Article  CAS  Google Scholar 

  38. S. Tokita, H. Kokawa, Y.S. Sato, H.T. Fujii, Mater. Charact. 131, 31 (2017)

    Article  CAS  Google Scholar 

  39. V. Randle, Acta Metall. Mater. 42, 1769 (1994)

    Article  CAS  Google Scholar 

  40. B.W. Reed, M. Kumar, Scr. Mater. 54, 1029 (2006)

    Article  CAS  Google Scholar 

  41. B.R. Kumar, S.K. Das, B. Mahato, A. Das, S.G. Chowdhury, Mater. Sci. Eng. A 454–455, 239 (2007)

    Article  Google Scholar 

  42. X.Y. Fang, W.G. Wang, Z.X. Cai, C.X. Qin, B.X. Zhou, Mater. Sci. Eng. A 527, 1571 (2010)

    Article  Google Scholar 

  43. F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, Acta Metall. Sin. -Engl. Lett. 20, 95 (2007)

    Article  CAS  Google Scholar 

  44. H.U. Hong, B.S. Rho, S.W. Nam, Mater. Sci. Eng. A 318, 285 (2001)

    Article  Google Scholar 

  45. M. Kurban, U. Erb, K.T. Aust, Scr. Mater. 54, 1053 (2006)

    Article  CAS  Google Scholar 

  46. M. Kumar, W.E. King, A.J. Schwartz, Acta Mater. 48, 2081 (2000)

    Article  CAS  Google Scholar 

  47. C.A. Schuh, M. Kumar, W.E. King, Acta Mater. 51, 687 (2003)

    Article  CAS  Google Scholar 

  48. A. Toppo, V. Shankar, R.P. George, J. Philip, Corrosion 76, 591 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51871048 and 52171108) and the Fundamental Research Funds for the Central Universities (Grant Nos. N2002014 and N2202011).

The authors state that there are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Li.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Yan, L., Hu, J. et al. Improving Intergranular Stress Corrosion Cracking Resistance in a Fe–18Cr–17Mn–2Mo–0.85N Austenitic Stainless Steel Through Grain Boundary Character Distribution Optimization. Acta Metall. Sin. (Engl. Lett.) 35, 1849–1861 (2022). https://doi.org/10.1007/s40195-022-01427-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01427-1

Keywords

Navigation