Skip to main content
Log in

Strain-Annealing Based Grain Boundary Engineering to Evaluate its Sole Implication on Intergranular Corrosion in Extra-Low Carbon Type 304L Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Strain-annealing based thermo-mechanical processing has been performed to promote grain boundary engineering (GBE) in an extra-low carbon type austenitic stainless steel without altering the grain size and residual strain to evaluate its sole influence on intergranular corrosion. Single-step processing comprising low pre-strain (~ 5 and 10 pct) followed by annealing at 1273 K for 1 hour have resulted in a large fraction of Σ3n boundaries and significant disruption in random high-angle grain boundaries (RHAGBs) connectivity. This is due to the occurrence of prolific multiple twinning in these specimens as confirmed by their large twin-related domain and twin-related grain size ratio. Among the iterative processing, the schedule comprising two cycles of 10 and 5 pct deformation followed by annealing at 1173 K for 1 hour has yielded the optimum GBE microstructure with the grain size and residual strain akin to the as-received condition. The specimens subjected to the higher number of iterations failed to realize GBE microstructures due to the occurrence of partial recrystallization. Owing to the optimum grain boundary character distribution, the GBE specimen has exhibited remarkable resistance against sensitization and intergranular corrosion as compared to the as-received condition. Furthermore, the lower depth of percolation in the GBE specimen is due to the significant disruption of RHAGBs connectivity as confirmed from its large twin-related domain and lower fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.A. Trillo and L.E. Murr: Acta Mater., 1998, vol. 47, pp. 235-45.

    Article  Google Scholar 

  2. R.C. Newman, K. Sieradzki and H.S. Isaacs: Metall. Trans. A, 1982, vol. 13, pp. 2015-26.

    Article  Google Scholar 

  3. W.J. Li, M.C. Young, C.L. Lai, W. Kai and L.W. Tsay: Corrosion Sci., 2013, vol. 68, pp. 25-33.

    Article  Google Scholar 

  4. E.A. Trillo, R. Beltran, J.G. Maldonado, R.J. Romero, L.E. Murr, W.W. Fisher and A.H. Advani: Mater. Charac., 1995, vol. 35, pp. 99-112.

    Article  Google Scholar 

  5. R.E. Hehemann: Metall. Trans. A., 1985, vol. 16, pp. 1909-23.

    Article  Google Scholar 

  6. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato and I. Karibe: Acta Mater., 2002, vol. 50, pp. 2331-41.

    Article  Google Scholar 

  7. M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato and K. Sakai: Acta Mater., 2006, vol. 54, pp. 5179-84.

    Article  Google Scholar 

  8. N. Parvathavarthini, S. Mulki, R.K. Dayal, I. Samajdar, K. V. Mani and B. Raj: Corrosion Sci., 2009, vol. 51, pp. 2144-50.

    Article  Google Scholar 

  9. R. Jones and V. Randle: Mater. Sci. Eng., A, 2010, vol. 527, pp. 4275-80.

    Article  Google Scholar 

  10. C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen and N. Wang: Corrosion Sci., 2011, vol. 53, pp. 1880-86.

    Article  Google Scholar 

  11. F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu and X.W. Li: Corrosion Sci., 2016, vol.107, pp. 49-59.

    Article  Google Scholar 

  12. G. Hou, H. Luo and J. Lv: Mater. Sci. Technol., 2014, vol. 30, pp. 1447-52.

    Article  Google Scholar 

  13. E.M. Lehockey, G. Palumbo, P. Lin and A. Brennenstuhl: Metall. Mater. Trans. A, 1998, vol. 29, pp. 387-96.

    Article  Google Scholar 

  14. S. Tsurekawa, S. Nakamichi and T. Watanabe: Acta Mater., 2006, vol. 54, pp. 3617-26.

    Article  Google Scholar 

  15. S. Kobayashi, R. Kobayashi and T. Watanabe: Acta Mater., 2016, vol. 102, pp. 397-405.

    Article  Google Scholar 

  16. P.M. Ahmedabadi, V. Kain, B.K. Dangi and I. Samajdar: Corrosion Sci., 2013, vol. 66, pp. 242-55.

    Article  Google Scholar 

  17. P.M. Ahmedabadi, V. Kain, K. Venkata Muralidhar and I. Samajdar: J. Nucl. Mater., 2013, vol. 432, pp. 243-51.

    Article  Google Scholar 

  18. S.K. Pradhan, T.S. Prithiv and S. Mandal: Mater. Charac., 2017, vol. 134, pp. 134-42.

    Article  Google Scholar 

  19. S.X. Li, Y.N. He, S.R. Yu and P.Y. Zhang: Corrosion Sci., 2013, vol. 66, pp. 211-16.

    Article  Google Scholar 

  20. R. Singh, S.G. Chowdhury, B. Ravi Kumar, S.K. Das, P.K. De, and I. Chattoraj: Scripta Mater., 2007, vol. 57, pp. 185-88.

    Article  Google Scholar 

  21. R. Singh, S.G. Chowdhury and I. Chattoraj: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2504-12.

    Article  Google Scholar 

  22. V. Randle: Acta Mater., 2004, vol. 52, pp. 4067-81.

    Article  Google Scholar 

  23. S. Mandal, P.V. Sivaprasad, B. Raj and V.S. Sarma: Metall. Mater. Trans. A, 2008, vol. 39, pp. 3298-3307.

    Article  Google Scholar 

  24. M. Kumar, A.J. Schwartz and W.E. King: Acta Mater., 2002, vol. 50, pp. 2599-2612.

    Article  Google Scholar 

  25. V. Randle: Mater. Sci. Technol., 2010, vol. 26, pp. 253–61.

    Article  Google Scholar 

  26. V. Randle and R. Jones: Mater. Sci. Eng., A, 2009, vol. 524, pp. 134-42.

    Article  Google Scholar 

  27. S. Mandal, A.K. Bhaduri and V.S. Sarma: J. Mater. Sci., 2011, vol. 46, pp. 275-84.

    Article  Google Scholar 

  28. K.S. Swaroop, S. Mandal, C.N. Atherya, B. de Boer and V.S. Sarma: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4740-54.

    Google Scholar 

  29. B.M. Guyot and N.L. Richards: J. Mater. Proces. Technol., 2007, vol. 189, pp. 162-68.

    Article  Google Scholar 

  30. V. Randle and M. Coleman: Acta Mater., 2009, vol. 57, pp. 3410-21.

    Article  Google Scholar 

  31. S. Mandal, A.K. Bhaduri and V.S. Sarma: Mater. Sci. Eng., A, 2009, vol. 515, pp. 134-40.

    Article  Google Scholar 

  32. H. Kokawa, M. Shimada, M. Michiuchi, Z.J. Wang and Y.S. Sato: Acta Mater., 2007, vol. 55, pp. 5401-07.

    Article  Google Scholar 

  33. D. Brandon: Acta Metall., 1966, vol. 14, pp. 1479-84.

    Article  Google Scholar 

  34. C. Cayron, B. Artaud and L. Briottet: Mater. Charac., 2006, vol. 57, pp. 386-401.

    Article  Google Scholar 

  35. C. Cayron: J. App. Crystall., 2007, vol. 40, pp. 1183-88.

    Article  Google Scholar 

  36. E. Charkaluk, M. Bigerelle and A. Iost: Eng. Fract. Mech., 1998, vol. 61, pp. 119-39.

    Article  Google Scholar 

  37. B. Dubuc, J.F. Quiniou, C.R. Carmes, C. Tricot and S.W. Zucker: Phys. Rev. A., 1989, vol. 39, pp. 1500-12.

    Article  Google Scholar 

  38. H. Samet and M.K. Tamminen: IEEE Trans. Pattern Anal. Mach. Intell.,1988, vol. 10, pp. 579-86.

    Article  Google Scholar 

  39. M.B. Dillencourt, H. Samet and M. Tamminen: J. ACM., 1992, vol. 39, pp. 253-80.

    Article  Google Scholar 

  40. V. Ĉíhal and R. Stefec: Electrochim. Acta., 2001, vol. 46, pp. 3867-77.

    Article  Google Scholar 

  41. BS EN ISO 12732:2008: Corrosion of metals and alloys Electrochemical potentio-kinetic reactivation measurement using the double loop method (based on Cihal’s method).

  42. ASTM A262-2015: Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels.

  43. Y. Gao, R.O. Ritchie, M. Kumar and R.K. Nalla: Metall. Mater. Trans. A, 2005, vol. 36, pp. 3325-33.

    Article  Google Scholar 

  44. A. Telang, A.S. Gill, D. Tammana, X. Wen, M. Kumar, S. Teysseyre, S.R. Mannava, D. Qian and V.K. Vasudevan: Mater. Sci. Eng., A., 2015, vol. 648, pp. 280-88.

    Article  Google Scholar 

  45. T. Watanabe: Res Mech., 1984, vol. 11, pp. 47-84.

    Google Scholar 

  46. H. Gleiter: Acta Metal., 1969, vol. 17, pp. 1421-28.

    Article  Google Scholar 

  47. G. Owen and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959-62.

    Article  Google Scholar 

  48. L.C. Lim and R. Raj: Acta Metal., 1984, vol. 32, pp. 1177-81.

    Article  Google Scholar 

  49. W. Wang and H. Guo: Mater. Sci. Eng., A, 2007 vol. 445–446, pp.155-62.

    Article  Google Scholar 

  50. M. Coleman and V. Randle: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2175-83.

    Article  Google Scholar 

  51. A.H. King: Scripta Metal., 1985, vol. 19, pp. 1517-20.

    Article  Google Scholar 

  52. T.S. Prithiv, P. Bhuyan, S.K. Pradhan, V.S. Srama and S. Mandal: Acta Mater., 2018, vol. 146, pp. 187-201.

    Article  Google Scholar 

  53. A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava and V.K. Vasudevan: Acta Mater., 2016, vol. 113, pp. 180-93.

    Article  Google Scholar 

  54. T.H. Lee, H.Y. Ha and S.J. Kim: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3543-48.

    Article  Google Scholar 

  55. S. Zhang, Z. Jiang, H. Li, H. Feng and B. Zhang: J. Alloys Compd., 2017, vol. 695, pp. 3083-93.

    Article  Google Scholar 

  56. N. Srinivasan, V. Kain, N. Birbilis, K. V. Mani Krishna, S. Shekhawat and I. Samajdar: Corrosion Sci., 2015, vol. 100, pp. 544-55.

    Article  Google Scholar 

  57. H.Y. Bi, H. Kokawa, Z.J. Wang, M. Shimada and Y.S. Sato: Scripta Mater., 2003, vol. 49, pp. 219-23.

    Article  Google Scholar 

  58. N. Keskar, A.K. Pattanaik, K. V. Mani Krishna, D. Srivastava and G.K. Dey: Metall. Mater. Trans. A., 2017, vol. 48, pp. 3096-3107.

    Article  Google Scholar 

  59. J. Qian, C. Chen, H. Yu, F. Liu, H. Yang and Z. Zhang: Corrosion Sci., 2016, vol. 111, pp. 352-61.

    Article  Google Scholar 

  60. T.H. Lee, Y.J. Lee, S.H. Joo, H.H. Nersisyan, K.T. Park and J.H. Lee: Metall. Mater. Trans. A., 2015, vol. 46, pp. 4020-26.

    Article  Google Scholar 

  61. G. Yamada, H. Kokawa, Y. Yasuda, S. Tokita, T. Yokoyama, Y.S. Sato, H.T. Fujii and S. Tsurekawa: Philos. Mag., 2013, vol. 93, pp. 1443-53.

    Article  Google Scholar 

  62. K. Deepak, S. Mandal, C.N. Athreya, D.I. Kim, B. de Boer and V.S. Sarma: Corrosion Sci., 2016, vol. 106, pp. 293-97.

    Article  Google Scholar 

  63. V.Y. Gertsman and C.H. Henager: Interface Sci., 2003, vol. 11, pp. 403-15.

    Article  Google Scholar 

  64. D.B. Bober, J. Lind, R.P. Mulay, T.J. Rupert and M. Kumar: Acta Mater., 2017, vol. 129, pp. 500-09.

    Article  Google Scholar 

Download references

Acknowledgments

The research grant received from the Indian National Science Academy (INSA) (SP/YSP/112/2015/1091) for this work is gratefully acknowledged. The authors are also grateful to C. Cayron for providing the ARPGE software for Twin-Related Domain analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumantra Mandal.

Additional information

Manuscript submitted November 4, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S.K., Bhuyan, P., Kaithwas, C. et al. Strain-Annealing Based Grain Boundary Engineering to Evaluate its Sole Implication on Intergranular Corrosion in Extra-Low Carbon Type 304L Austenitic Stainless Steel. Metall Mater Trans A 49, 2817–2831 (2018). https://doi.org/10.1007/s11661-018-4608-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4608-1

Navigation