Skip to main content

Advertisement

Log in

Arachidonic Acid Synthesis in Mortierella alpina: Origin, Evolution and Advancements

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Mortierella alpina is a saprophytic, oleaginous soil fungus distributed worldwide. It is used extensively to produce omega fatty acids under different fermentation conditions. This psychrophilic filamentous fungus is currently considered as the most promising oleaginous microorganism for industrial production of arachidonic acid. The efficiency to synthesize arachidonic acid owes to its unique genetic organization encoding various fatty acid synthase enzymes. The enzymes involved in arachidonic acid synthesis has been characterized well both at the molecular and biochemical level. The characterization was accomplished by molecular techniques like gene cloning, generation of heterologous/homologous transformants and expression analysis. Currently the industrial production of arachidonic acid is accomplished by submerged fermentation and the solid substrate bioprocess approach is still in its infancy. Further advances in this fungal research have brought out various prominent arachidonic acid producing strains as IS-4 and ATCC 32222. With genome projects in two strains already being accomplished and the lipogenesis pathways predicted, further developments and innovations are expected. The growing interest in the inclusion of specially the lipids including arachidonic acid in the routine diet is demanding expansion of its commercial production. The demand is attributed to the active involvement of arachidonic acid in various physiological systems including brain and cardiovascular system. Considering the above scenario a review on the overall developments in isolation, identification, molecular characterization, biotechnological developments and their future prospects are discussed herewith. The review also details the various niche areas in the current research trends which needs immediate attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grantina-Ievina LG, Berzina A, Nikolajeva V, Mekss P, Muiznieks I (2014) Production of fatty acids by Mortierella and Umbelopsis species isolated from temperate climate soils. Environ Exp Biol 12:15–27

    Google Scholar 

  2. Wagner L, Stielow B, Hoffmann K, Petkovits T, Papp T, Vagvolgyi C, Hoog GS, Verkley G, Voigt K (2013) A comprehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Persoonia 30:77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Samadlouie HR, Esfahani ZH, Alavi SM, Najafabadi MS, Sahari MA, Abbasi S (2012) Statistical approach to optimization of fermentative production of oil and arachidonic acid from Mortierella alpine CBS 754.68. Afr J Microbiol Res 6(7):1559–1567

    CAS  Google Scholar 

  4. Wynn JP, Ratledge C (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  PubMed  Google Scholar 

  5. Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84(1):1–10

    Article  CAS  PubMed  Google Scholar 

  6. Sakuradani E (2010) Advances in the production of various polyunsaturated fatty acids through oleaginous fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74(5):100001-1–100001-10

    Article  CAS  Google Scholar 

  7. Higashiyama K, Fujikawa S, Park EY, Shimizu S (2002) Production of arachidonic acid by Mortierella fungi. Biotechnol Bioprocess Eng 7:252–262

    Article  CAS  Google Scholar 

  8. Vadivelan G, Venkateswaran G (2014) Production and enhancement of omega-3 fatty acid from Mortierella alpina CFR-GV15: its food and therapeutic application. BioMed Res Int. Article ID 657414, 9

  9. FAO/WHO (1994) FAO Food and Nutrition Paper No. 57. Fats and oils in human nutrition. Report of a joint expert consultation, Rome, pp 49–55

  10. Innis SM (2005) Essential fatty acid transfer and fetal development. Placenta 26(Suppl A):S70–S75

    Article  PubMed  CAS  Google Scholar 

  11. Carlson SE (2001) Docosahexaenoic acid and arachidonic acid in infant development. Semin Neonatol 6(5):437–449

    Article  CAS  PubMed  Google Scholar 

  12. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA (1994) Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 60:189–194

    CAS  PubMed  Google Scholar 

  13. Hoffman DR, Boettcher JA, Diersen-Schade DA (2009) Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids 81:151–158

    Article  CAS  PubMed  Google Scholar 

  14. Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem N Jr (2010) Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids 82:305–314

    Article  CAS  PubMed  Google Scholar 

  15. Kiso Y (2011) Pharmacology in health foods: effects of arachidonic acid and docosahexaenoic acid on the age-related decline in brain and cardiovascular system function. J Pharmacol Sci 115(4):471–475

    Article  CAS  PubMed  Google Scholar 

  16. Hu FB, Willett WC (2002) Optimal diets for prevention of coronary heart disease. JAMA 288:2569–2578

    Article  CAS  PubMed  Google Scholar 

  17. Laaksonen DE, Nyyssönen K, Niskanen L, Rissanen TH, Salonen JT (2005) Prediction of cardiovascular mortality in middle-aged men by dietary and serum linoleic and polyunsaturated fatty acids. Arch Intern Med 165:193–199

    Article  CAS  PubMed  Google Scholar 

  18. Sakuradani E, Shimizu S (2003) Gene cloning and functional analysis of a second D6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Biosci Biotechnol Biochem 67(4):704–711

    Article  CAS  PubMed  Google Scholar 

  19. Sakuradani E, Kobayashi M, Shimizu S (1999) Δ6-Fatty acid desaturase from an arachidonic acid-producing Mortierella fungus: gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238(2):445–453

    Article  CAS  PubMed  Google Scholar 

  20. Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM et al (1999) Cloning of ∆12- and ∆6-desaturases from Mortierella alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids 34(7):649–659

    Article  CAS  PubMed  Google Scholar 

  21. Jareonkitmongkol S, Kawashima H, Shimizu S, Yamada H (1992) Production of 5,8,11-cis-eicosatrienoic acid by a D12-desaturase defective mutant of Mortierella alpina 1S-4. J Am Oil Chem Soc 69:939–944

    Article  CAS  Google Scholar 

  22. Chen R, Matsui K, Ogawa M, Oe M, Ochiai M, Kawashima H et al (2006) Expression of Δ6, Δ5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci 170(2):399–406

    Article  CAS  Google Scholar 

  23. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Dictionary of the fungi, 9th edn. CAB International, Wallingford

    Google Scholar 

  24. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  25. Moreau F (1954) Les Champignons. Physiologie, morphologie, développment et systématique, vol 2. Lechevalier, Paris

    Google Scholar 

  26. Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox C et al (2006) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  28. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  29. Degawa Y, Gams W (2004) A new species of Mortierella, and an associated sporangiiferous mycoparasite in a new genus, Nothadelphia. Stud Mycol 50:567–572

    Google Scholar 

  30. Zhu M, Yu LJ, Liu Z, Xu HB (2004) Isolating Mortierella alpina strains of high yield of arachidonic acid. Lett Appl Microbiol 39(4):332–335

    Article  CAS  PubMed  Google Scholar 

  31. Thormann MN, Currah RS, Bayley SE (2004) Patterns of distribution of microfungi in decomposing bog and fen plants. Can J Bot 82:710–720

    Article  Google Scholar 

  32. Ali SH, Alias SA, Siang HY, Smykla J, Pang KL, Guo SY, Convey P (2013) Studies on diversity of soil microfungi in the Hornsund area, Spitsbergen. Pol Polar Res 34(1):39–54

    Google Scholar 

  33. Zhang J, Man B, Fu B, Liu L, Han C (2013) The diversity of soil culturable fungi in the three alpine shrub grasslands of Eastern Qilian Mountains. Front Earth Sci 7(1):76–84

    Article  Google Scholar 

  34. Orgiazzi A, Bianciotto V, Bonfante P, Daghino S, Ghignone S, Lazzari A et al (2012) 454 Pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome. Diversity 5:73–98

    Article  CAS  Google Scholar 

  35. Ho SY, Chen F (2008) Genetic characterization of Mortierella alpina by sequencing the 18S–28S ribosomal gene internal transcribed spacer region. Lett Appl Microbiol 47(4):250–255

    Article  CAS  PubMed  Google Scholar 

  36. Kuhlman EG (1975) Zygospore formation in Mortierella alpina and Mortierella spinosa. Mycologia 67(3):678–681

    Article  Google Scholar 

  37. Sarathchandra SU, Burch G, Sayer ST, Waipara NW, Cox NR, Ghani A et al (2005) Biodiversity of indigenous tussock grassland sites in Otago, Canterbury and the central North Island of New Zealand III. Soil microorganisms. J R Soc N Z 35(3):321–337

    Article  Google Scholar 

  38. Wang L, Chen W, Feng Y, Ren Y, Gu Z et al (2011) Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE 6(12):e28319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Swer H, Dkhar MS, Kayang H (2011) Fungal population and diversity in organically amended agricultural soils of Meghalaya, India. J Org Sys 6(2):3–12

    Google Scholar 

  40. Peciulyte D, Volodkiene VD (2012) Effect of zinc and copper on cultivable populations of soil fungi with special reference to entomopathogenic fungi. Ekologija 58(2):65–85

    Article  CAS  Google Scholar 

  41. Sanchez Marquez S, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  42. Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SCN et al (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23

    Article  CAS  PubMed  Google Scholar 

  43. Warcup JH (1950) The soil − plate method for isolation of fungi from soil. Nature 166:117–118

    Article  CAS  PubMed  Google Scholar 

  44. Chen HC, Chang CC, Chen CX (1997) Optimization of arachidonic acid production by Mortierella alpina Wuji H4 isolate. J Am Oil Chem Soc 74:569–578

    Article  CAS  Google Scholar 

  45. Hao G, Chen H, Wang L, Gu Z, Song Y, Zhang H, Chen W, Chen YQ (2014) Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 80(9):2672–2678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sakuradani E, Hirano Y, Kamada N, Nojiri M, Ogawa J, Shimizu S (2004) Improvement of arachidonic acid production by mutants with lower n-3 desaturation activity derived from Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66:243–248

    Article  CAS  PubMed  Google Scholar 

  47. Gams WA (1977) Key to the species of Mortierella. Persoonia 9:381–391

    Google Scholar 

  48. Botha A, Paul I, Roux C, Kock JLF, Coetzee DJ, Strauss T, Maree C (1999) An isolation procedure for arachidonic acid producing Mortierella species. Antonie Van Leeuwenhoek 75:253–256

    Article  CAS  PubMed  Google Scholar 

  49. Webster J, Weber RWS (2007) Introduction to fungi, 3rd edn. Cambridge University Press, Cambridge, pp p197–p200

    Book  Google Scholar 

  50. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Academic Press, London

    Google Scholar 

  51. Eroshin VK, Dedyukhina EG, Chistyakova TI, Zhelifonova VP, Kurtzman CP, Bothast RJ (1996) Arachidonic-acid production by species of Mortierella. World J Microbiol Biotechnol 2:91–96

    Article  Google Scholar 

  52. Carter AT, Mackenzie DA, Pearson BM, Archer DB (2000) PCR fingerprinting with a consensus tRNA primer enables strain identification of Mortierella alpina. Mycol Res 104:794–799

    Article  CAS  Google Scholar 

  53. Schwarz P, Bretagne S, Gantier JC, Garcia-Hermoso D, Lortholary O, Dromer F, Dannaoui E (2006) Molecular identification of Zygomycetes from culture and experimentally infected tissues. J Clin Microbiol 44:340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwasna H, Ward E, Bateman GL (2006) Phylogenetic relationships among Zygomycetes from soil based on ITS1/2 rDNA sequences. Mycol Res 110(Pt 5):501–510

    Article  CAS  PubMed  Google Scholar 

  55. Yuan C, Wang J, Shang Y, Gong G, Yao J, Yu Z (2002) Production of arachidonic acid by Mortierella alpina I49-N18. Food Technol Biotechnol 40(4):311–315

    CAS  Google Scholar 

  56. Zeng Y, Ji XJ, Chang SM, Nie ZK, Huang H (2012) Improving arachidonic acid accumulation in Mortierella alpina through B-group vitamin addition. Bioprocess Biosyst Eng 35:683–688

    Article  CAS  PubMed  Google Scholar 

  57. Peng C, Huang H, Ji X, Liu X, Ren L, Yu W, You J, Lu J (2010) Effects of n-hexadecane concentration and a two-stage oxygen supply control strategy on arachidonic acid production by Mortierella alpina ME-1. Chem Eng Technol Spl Issue Mater Energy Flow Anal 33(4):692–697

    CAS  Google Scholar 

  58. Dedyukhina EG, Chistyakova TI, Kamzolova SV, Vinter MV, Vainshtein MB (2012) Arachidonic acid synthesis by glycerol-grown Mortierella alpina. Eur J Lipid Sci Technol 114(7):833–841

    Article  CAS  Google Scholar 

  59. Li ZY, Lu Y, Yadward VB, Ward OP (1995) Process for production of arachidonic acid concentrate by a strain of Mortierella alpina. Can J Chem Eng 73:135–139

    Article  CAS  Google Scholar 

  60. Hwang BH, Kim JW, Park CY, Park CS, Kim YS, Ryu YW (2005) High-level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH4OH as a nitrogen source and pH control. Biotechnol Lett 27:731–735

    Article  CAS  PubMed  Google Scholar 

  61. Singh A, Ward OP (1997) Production of high yields of arachidonic acid in a fed-batch system by Mortierella alpina ATCC 32222. Appl Microbiol Biotechnol 48:1–5

    Article  CAS  Google Scholar 

  62. Michaelson LV, Lazarus CM, Griffiths G, Napier JA, Stobart AK (1998) Isolation of a ∆5-Fatty acid desaturase gene from Mortierella alpina. J Biol Chem 273:19055–19059

    Article  CAS  PubMed  Google Scholar 

  63. Sakuradani E, Kobayashi M, Shimizu S (1999) ∆9-Fatty acid desaturase from arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus, Aspergillus. Eur J Biochem 260:208–216

    Article  CAS  PubMed  Google Scholar 

  64. Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of D12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820

    Article  CAS  PubMed  Google Scholar 

  65. Wongwathanarat P, Michaelson LV, Carter AT, Lazarus CM, Griffiths G, Stobart AK et al (1999) Two fatty acid D9-desaturase genes, ole1 and ole2, from Mortierella alpina complement the yeast ole1 mutation. Microbiology 145:2939–2946

    Article  CAS  PubMed  Google Scholar 

  66. Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT et al (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA 97:8284–8289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abe T, Sakuradani E, Asano T, Kanamaru H, Shimizu S (2006) Functional characterization of ∆9 and omega9 desaturase genes in Mortierella alpina 1S-4 and its derivative mutants. Appl Microbiol Biotechnol 70(6):711–719

    Article  CAS  PubMed  Google Scholar 

  68. MacKenzie DA, Carter AT, Wongwathanarat P, Eagles J, Salt J, Archer DB (2002) A third fatty acid D9-desaturase from Mortierella alpina with a different substrate specificity to ole1p and ole2p. Microbiology 148:1725–1735

    Article  CAS  PubMed  Google Scholar 

  69. Knutzon DS, Thurmond JM, Huang YS, Chaudhary S, Bobik EG Jr, Chan GM et al (1998) Identification of D5-desaturase from Mortierella alpina by heterologous expression in bakers’ yeast and canola. J Biol Chem 273(45):29360–29366

    Article  CAS  PubMed  Google Scholar 

  70. Liu L, Li MC, Hu GW, Ge J, Zhang L, Cheng ZH, Xing LJ (2001) Expression of ∆6-fatty acid desaturase gene from Mortierella alpina in Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao 17(2):161–164

    CAS  PubMed  Google Scholar 

  71. Chen R, Tsuda S, Matsui K, Mizutani MF, Ochiai M, Shimizu S et al (2005) Production of γ-linolenic acid in Lotus japonicus and Vigna angularis by expression of the Δ6-fatty-acid desaturase gene isolated from Mortierella alpina. Plant Sci 69(3):599–605

    Article  CAS  Google Scholar 

  72. Liu J, Li D, Yin Y, Wang H, Li M, Yu L (2011) Δ6-Desaturase from Mortierella alpina: cDNA cloning, expression, and phylogenetic analysis. Biotechnol Lett 33(10):1985–1991

    Article  CAS  PubMed  Google Scholar 

  73. Wynn JP, Ratledge C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiolog 146:2325–2331

    CAS  Google Scholar 

  74. Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005) Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids 40(1):25–30

    Article  CAS  PubMed  Google Scholar 

  75. Reichel C, Mathur J, Eckes P, Langenkemper K, Koncz C, Schell J, Reiss B, Maas C (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc Natl Acad Sci USA 93(12):5888–5893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu M, Liu Z, Yu LJ, Zhu L, Cheng H (2005) Isolation and functional identification of ∆5 desaturase gene from Mortierella alpina. Yi Chuan Xue Bao 2(9):986–992

    Google Scholar 

  77. Etienne KA, Chibucos MC, Su Q, Orvis J, Daugherty S, Ott S et al (2014) Draft genome sequence of Mortierella alpina Isolate CDC-B6842. Genome Announcements 2(1):e01180-13

    Article  PubMed  PubMed Central  Google Scholar 

  78. Totani N, Oba A (1987) The filamentous fungus Mortierella alpina, high in arachidonic acid. Lipids 22:1060–1062

    Article  CAS  Google Scholar 

  79. Nisha A (2009) Biotechnological studies for the production of arachidonic from Mortierella alpina. Masters thesis, Central Food Technological Research Institute, University of Mysore, Karnataka, p 83

  80. Bajpai PK, Bajpai P, Ward OP (1999) Arachidonic acid production by fungi. Appl Env Microbiol 57:1255–1258

    Google Scholar 

  81. Sakuradani E, Shimizu S (2009) Single cell oil production by Mortierella alpina. J Biotechnol 144(1):31–36

    Article  CAS  PubMed  Google Scholar 

  82. Higashiyama K, Yaguchi T, Akimoto K, Fujikawa S, Shimizu S (1998) Enhancement of arachidonic acid production by Mortierella alpina 1S-4. J Am Oil Chem Soc 75:1501–1505

    Article  CAS  Google Scholar 

  83. Bajpai PK, Bajpai P, Ward OP (1991) Production of arachidonic acid by Moritierella alpina ATCC 32222. J Ind Microbiol 8:179–185

    Article  CAS  PubMed  Google Scholar 

  84. Higashiyama K, Yaguchi T, Akimoto K, Fujikawa S, Shimizu S (1998) Effects of mineral addition on the growth morphology of and arachidonic acid production by Mortierella alpina 1S-4. J Am Oil Chem Soc 75:1815–1819

    Article  CAS  Google Scholar 

  85. Higashiyama K, Murakami K, Tsujimura H, Matsumoto N, Fujikawa S (1999) Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S-4. Biotechnol Bioeng 63:442–448

    Article  CAS  PubMed  Google Scholar 

  86. Higashiyama K, Fujikawa S, Park EY, Okabe M (1999) Image analysis of morphological change during arachidonic acid production by Mortierella alpina 1S-4. J Biosci Bioeng 87(4):489–494

    Article  CAS  PubMed  Google Scholar 

  87. Park EY, Koike Y, Higashiyama K, Fujikawa S, Okabe M (1999) Effects of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. J Biosci Bioeng 88:61–67

    Article  CAS  PubMed  Google Scholar 

  88. Jang HD, Lin YY, Yang SS (2005) Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresour Technol 96(15):1633–1644

    Article  CAS  PubMed  Google Scholar 

  89. Nisha A, Venkateswaran G (2011) Effect of culture variables on mycelial arachidonic acid production by Mortierella alpina. Food Bioprocess Technol 4:232–240

    Article  CAS  Google Scholar 

  90. Hou CT (2008) Production of arachidonic acid and dihomo-γ-linolenic acid from glycerol by oil-producing filamentous fungi, Mortierella in the ARS culture collection. J Ind Microbiol Biotechnol 35:501–506

    Article  CAS  PubMed  Google Scholar 

  91. Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H (1989) Production of arachidonic acid by Mortierella fungi. Appl Microbiol Biotechnol 31(1):11–16

    Article  CAS  Google Scholar 

  92. Kyle DJ (1996) Arachidonic acid and methods for the production and use thereof. WIPO Patent WO1996021037 A1

  93. Totani N, Hyodo K, Ueda T (2000) Minerals essential for growth of the filamentous fungus, Mortierella alpina. J Jpn Oil Chem Soc 49(5):487–493

    Article  CAS  Google Scholar 

  94. Totani N, Yamaguchi A, Yawata M, Ueda T (2002) The role of morphology during growth of Mortierella alpina in arachidonic acid production. J Oleo Sci 51(8):531–538

    Article  CAS  Google Scholar 

  95. Park EY, Koike Y, Cai HJ, Higashiyama K, Fujikawa S (2001) Morphological diversity of Mortierella alpina: effect of consumed carbon to nitrogen ratio in flask culture. Biotechnol Bioprocess Eng 6:161–166

    Article  CAS  Google Scholar 

  96. Koike Y, Cai HJ, Higashiyama K, Fujikawa S, Park EY (2001) Effect of consumed carbon to nitrogen ratio on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. J Biosci Bioeng 91:381–389

    Article  Google Scholar 

  97. Salimi KR, Esfahani ZH, Abbasi S (2011) Statistical optimization of arachidonic acid production by Mortierella alpina CBS 754.68 in submerged fermentation Iran. J Biotechnol 9(2):87–93

    Google Scholar 

  98. Nisha A, Rastogi NK, Venkateswaran G (2011) Optimization of media components for enhanced arachidonic acid production by Mortierella alpina under submerged cultivation. Biotechnol Bioproc Eng 16(2):229–237

    Article  CAS  Google Scholar 

  99. Jin MJ, Huang H, Xiao AH, Gao Z, Liu X, Peng C (2009) Enhancing arachidonic acid production by Mortierella alpina ME-1 using improved mycelium aging technology. Bioproc Biosyst Eng 32(1):117–122

    Article  CAS  Google Scholar 

  100. Eroshin VK, Satroutdinov AD, Dedyukhina EG, Christyakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:171–1175

    Article  Google Scholar 

  101. Jin MJ, Huang H, Xiao AH, Zhang K, Liu X, Li S, Peng C (2008) A novel two-step fermentation process for improved arachidonic acid production by Mortierella alpina. Biotechnol Lett 30:1087–1091

    Article  CAS  PubMed  Google Scholar 

  102. Eroshin VK, Dedyukhina EG, Satroutdinov AD, Christyakova TI (2002) Growth-coupled lipid synthesis in Mortierella alpina LPM 301, a producer of arachidonic acid. Microbiology 71(2):169–172

    Article  CAS  Google Scholar 

  103. Zhu M, Yu LJ, Li W, Zhou PP, Li CY (2006) Optimization of arachidonic acid production by fed-batch culture of Mortierella alpina based on dynamic analysis. Enzyme Microb Technol 38(6):735–740

    Article  CAS  Google Scholar 

  104. Ji XJ, Zhang AH, Nie ZK, Wu WJ, Ren LJ, Huang H (2014) Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. Bioresour Technol 170:356–360

    Article  CAS  PubMed  Google Scholar 

  105. Bhargav S, Panda BP, Ali M, Javed M (2008) Solid-state fermentation: an overview. Chem Biochem Eng Q 22(1):49–70

    CAS  Google Scholar 

  106. Stredanska S, Slugen D, Stredansky M, Grego J (1993) Arachidonic acid production by Mortierella alpina grown on solid substrates. World J Microbiol Biotechnol 9:511–513

    Article  CAS  Google Scholar 

  107. Jang HD, Lin YY, Yang SS (2000) Polyunsaturated fatty acid production with Mortierella alpina by solid state fermentation. Bot Bull Acad Sin 41:41–48

    CAS  Google Scholar 

  108. Certik M, Adamechova S (2009) Cereal-based bioproducts containing polyunsaturated fatty acids. Lipid Technol 21(11–12):250–253

    Article  CAS  Google Scholar 

  109. Stressler T, Eisele T, Rost J, Haunschild E-M, Kuhn A, Fischer L (2013) Production of polyunsaturated fatty acids by Mortierella alpina using submerse and solid state fermentation. Chem Ing Tech 85:318–322

    Article  CAS  Google Scholar 

  110. Sakuradani E, Ando A, Shimizu S, Ogawa J (2013) Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosc Bioeng 116(4):417–422

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere acknowledgement to Mr. Aseem Chauhan, Additional President, RBEF, Amity; Lt. Gen. V.K. Sharma, AVSM (Retd), Vice Chancellor, Amity University, Gwalior, Madhya Pradesh, India and Mr. Abhilash Nair, Managing Director, Zeus Biotech Ltd, Mysore, Karnataka, India for their support and encouragement throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Kumar Mishra.

Additional information

Arun chand Rayaroth and Rajesh Singh Tomar have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayaroth, A., Tomar, R.S. & Mishra, R.K. Arachidonic Acid Synthesis in Mortierella alpina: Origin, Evolution and Advancements. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 1053–1066 (2017). https://doi.org/10.1007/s40011-016-0714-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0714-2

Keywords

Navigation