Skip to main content
Log in

Production of arachidonic acid byMortierella alpina ATCC 32222

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

WhenMortierella alpina ATCC 32222 was incubated in a glucose salts medium at 25°C the biomass (17.5 g/l) contained 9.62% arachidonic acid which amounted to 54% (w/w) of total biomass lipids. When the glucose concentration in the medium was varied from 0 to 150 g/l, the percentage of arachidonic acid in biomass and in lipids was highest at a glucose concentration of 30 g/l, but highest yield of arachidonic acid per litre of culture broth was observed at a glucose concentration of 100 g/l. While production of biomass reached a plateau of 17 g/l after a 3-day incubation at 25°C, the percentage of arachidonic acid in lipids and biomass increased dramatically from 3 to 6 days with a concurrent arachidonic acid yield increase from 0.89 to 1.63 g/l. Optimum initial culture pH for arachidonic acid production was in the range 6.0–6.7. By increasing the concentration of the glucose salts medium three-fold, yields of biomass and arachidonic acid were increased to 35.8 g/l and 3.73 g/l, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern, T.J., S. Katoh and E. Sada. 1983. Arachidonic acid production by the red algaPorphyridium cruentum. Biotechnol. Bioeng. 25: 1057–1070.

    Google Scholar 

  2. Arao, T., A. Kawaguchi and M. Yamada. 1987. Positional distribution of fatty acids in lipids of the marine diatomPhaeodactylum tricornutum. Phytochemistry 26(9): 2573–2576.

    Google Scholar 

  3. Bajpai, P.K., P. Bajpai and O.P. Ward. 1990. Arachidonic acid production by fungi. Second International Conference on Microbiol Metabolites. Soc. Industr. Microbiol., Sarasota, FL.

  4. Bergstrom, S. and H. Danielsson. 1984. The enzymatic formation of prostaglandin E2 from arachidonic acid, prostaglandins and related factors. Biochim. Biophys. Acta 90: 207–210.

    Google Scholar 

  5. Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Google Scholar 

  6. Block, K. and D. Vance. 1977. Control mechanisms in the synthesis of saturated fatty acids. Annu. Rev. Biochem. 46: 263–298.

    Google Scholar 

  7. Boulton, C.A. and C. Ratledge. 1985. Biosynthesis of fatty acids and lipids. In: Comprehensive Biotechnology, Vol. 1 (Moo-Young, M., ed.), pp. 459–482. Pergamon Press, Oxford.

    Google Scholar 

  8. Chesters, C.G. and J.F. Peberdy. 1965. Nutritional factors in relation to growth and fat synthesis inMortierella vinacea. J. Gen. Microbiol. 41: 127–134.

    Google Scholar 

  9. Chu, F.-L.E. and J.L. Dupuy. 1980. The fatty acid composition of three unicellular algal species used as food sources for larvae of the American oyster (Crassostrea virginica). Lipids 15: 356–364.

    Google Scholar 

  10. Das, U.N., M.E. Begin, Y.S. Huang and D.F. Horrobin. 1987. Polyunsaturated fatty acids augment free radical generation in tumor cellsin vitro. Biochem. Biophys. Res. Commun. 145: 15–24.

    Google Scholar 

  11. Erwin, J. 1973. Comparative biochemistry of fatty acids in eukaryotic microorganisms. In: Lipids and Biomembranes of Eucaryotic Microorganisms (Erwin, J.A., ed.), pp. 41–143, Academic Press, New York, NY.

    Google Scholar 

  12. Erwin, J. and K. Bloch. 1964. Biosynthesis of unsaturated fatty acids in microorganisms—structure and biosynthetic pathways are compared and related to physiological properties of the organisms. Science 143: 1006–1012.

    Google Scholar 

  13. Ferrante, G. and M. Kates. 1983. Pathways for desaturation of oleoyl chains ofCandida lipolytica. Can. J. Biochem. Cell Biol. 61: 1191–1196.

    Google Scholar 

  14. Gellerman, J.L. and K. Schlenk. 1979. Methyl-directed desaturation of arachidonic acid to eicosapentaenoic acid in the fungus,Saprolegnia parasitica. Biochim. Biophys. Acta 573: 23–30.

    Google Scholar 

  15. Hansson, L. and M. Dostalek. 1988. Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungusMortierella ramanniana. Appl. Microbiol. Biotechnol. 28: 240–246.

    Google Scholar 

  16. Harris, R.V. and A.T. James. 1965. Linoleic and α-linolenic acid biosynthesis in plant leaves and a green alga. Biochim. Biophys. Acta 106: 456–464.

    Google Scholar 

  17. Holub, B.J. and C.M. Skeaff. 1987. Nutritional regulation of cellular phosphatidylinositol. Meth. Enzymol. 141: 234–244.

    Google Scholar 

  18. Marx, J.L. 1982. The leukotrienes in allergy and inflammation. Science 215: 1380–1383.

    Google Scholar 

  19. Meyer, F. and K. Bloch. 1963. Effect of temperature on the enzymatic synthesis of unsaturated fatty acids byTorulopsis utilis. Biochim. Biophys. Acta 106: 456–464.

    Google Scholar 

  20. Orme, T.W., J. McIntyre, F. Lynen, L. Kühn and E. Schweizer. 1972. Fatty-acid elongation in a mutant ofSaccharomyces cerevisiae deficient in fatty-acid synthase. Eur. J. Biochem. 24: 407–415.

    Google Scholar 

  21. Roggenkamp, R., S. Numa and E. Schweizer. 1980. Fatty acid-requiring mutant ofSaccharomyces cerevisiae defective in acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA 77: 1814–1817.

    Google Scholar 

  22. Schweizer, E. 1989. Biosynthesis of fatty acids and related compounds. In: Microbial Lipids (Vol. 2). (Ratledge, C. and S.G. Wilkinson, eds.) pp. 3–50, Academic Press, London.

    Google Scholar 

  23. Shimizu, S., Y. Shinmen, H. Kawashima, K. Akimoto and H. Yamada. 1988. Fungal mycelia as a novel source of eicosapentaenoic acid production at low temperature. Biochem. Biophys. Res. Comm. 150, 335–341.

    Google Scholar 

  24. Shimizu, S., H. Kawashima, K. Akimoto and H. Yamada. 1989. Microbial conversion of an oil containing α-linolenic acid to an oil containing eicosapentaenoic acid. J. Am. Oil. Chem. Soc. 66: 342–347.

    Google Scholar 

  25. Shinmen, Y., H. Yamada and S. Shimizu. 1988. Microbial process for production of dihomo-γ-linolenic acid and eicosapentaenoic acid. European Patent Application 252716.

  26. Simopoulos, A.P. 1989. Summary of the NATO advanced research workshop on dietary ω3 and ω6 fatty acids: Biological effects and nutritional essentiality. J. Nutr. 119: 521–528.

    Google Scholar 

  27. Sinden, K.W. 1987. The production of lipids by fermentation within the EEC. Enz. Microb. Technol. 9, 124 (1987).

    Google Scholar 

  28. Ward, O.P. 1989. Fermentation Biotechnology, Open University Press, Milton Keynes.

    Google Scholar 

  29. Wassef, M.K. 1977. Fungal lipids. In: Advances in Lipid Research. (Paoletti, A. and D. Kritchevsky, eds.) Vol. 15, pp. 159–232, Academic Press, New York, N.Y.

    Google Scholar 

  30. Yamada, H., S. Shimizu and Y. Shinmen. 1987. Production of arachidonic acid byMortierella elongata 1S-5. Agricult. Biol. Chem. 51: 785–790.

    Google Scholar 

  31. Yongmanitchai, W. and O.P. Ward. 1989. Omega-3 fatty acids: Alternative sources of production. Proc. Biochem. 24: 117–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, P.K., Bajpai, P. & Ward, O.P. Production of arachidonic acid byMortierella alpina ATCC 32222. Journal of Industrial Microbiology 8, 179–185 (1991). https://doi.org/10.1007/BF01575851

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01575851

Key words

Navigation