Skip to main content
Log in

Heavy metal stress in the agro-environment: consequences, adaptations and remediation

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The adverse effects of abiotic components of the environment have led to noteworthy increases in drip global agricultural productivity. Among abiotic stresses, heavy metal (HM) stress is an important environmental factor with a significant negative impact on plants and requires serious attention due to its global presence. HMs are mostly found as key chemical components integrated into rock, particularly in industrial and urban areas. Rapid industrial development coupled with urbanization has amplified the accumulation of anthropogenic HMs in the environment. In comparison with organic substances, HMs cannot be decayed by biological interventions and thus remain in the environment for an extended period and subsequently pass through the food chain and subsequently accumulate in the bodies of humans and animals. This review provides a detailed account of the occurrence and behaviour of HMs in the environment, especially in the pedosphere, which affects the soil processes and physiology and biochemistry of plants. However, plants, particularly HM accumulators, are equipped with complex multilevel defense mechanisms to survive HM-induced stress. Here, we attempted to provide an explicit overview of these mechanisms at the cellular and molecular levels. Special emphasis has been given to the potential applications of these HM-tolerant traits in the transgenic development and phytoremediation of HMs, which might shape the future of research in the domains of plant science and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source: Authors’ created image)

Fig. 3

(Adapted from Angulo-bejarano et al. 2021 under Open Access Creative Commons Attribution (CC BY) license). HMs (such as Pb, Cd, As, and Zn) are absorbed by the root cells where their presence or high concentrations activate various signaling pathways inside the cell. a The release of organic acids (OAs) from mitochondria that form complexes with the metallic ions outside the root cell and/or b the introduction of metals and metal-OA complexes to cells through transporters (ABC-type, ZIPs, CDF, ATPase H+ metal, etc.) are two examples of how the metal sensing signals trigger a defense response in plants. These metals are then carried into vacuoles by the metal transporters (ABC-type, NRAMP, CAX, and MTP) from the cytosol where they c form complexes with protein chelators (MTs and PCs) and d accumulate there or in another organelle like the Golgi bodies. Transporters (ZIP2 and ZNT1) and HMs can also be moved e from the xylem to the shoots where they can be incorporated f into cell vacuoles, the Golgi (MTP11), and chloroplasts (HMA) through transporters. PC—phytochelatin; MT—metallothionein

Fig. 4

(Adapted from Singh et al. (2016) under Open Access Creative Commons Attribution (CC BY) license)

Fig. 5

(Source: Adapted from Singh et al. (2016) under Open Access Creative Commons Attribution (CC BY) license)

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdelfattah I, Abuarab ME, Mostafa E, El-Awady MH, Aboelghait KM, El-Shamy AM (2023) Integrated system for recycling and treatment of hazardous pharmaceutical wastewater. Int J Environ Sci Technol 20(4):4101–4110. https://doi.org/10.1007/s13762-022-04269-7

    Article  CAS  Google Scholar 

  • Abo-Alkasem MI, Hassan NMH, Abo Elsoud MM (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Nat Res Centre 47(1):31. https://doi.org/10.1186/s42269-023-01006-z

    Article  Google Scholar 

  • Abuzaid AS, Abdel-Salam MA, Ahmad AF, Fathy HA, Fadl ME, Scopa A (2022) Effect of marginal-quality irrigation on accumulation of some heavy metals (Mn, Pb, and Zn) in typic torripsamment soils and food crops. Sustainability. https://doi.org/10.3390/su14031067

    Article  Google Scholar 

  • Acosta JA, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324. https://doi.org/10.1016/j.chemosphere.2011.07.046

    Article  CAS  Google Scholar 

  • Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, Shafiq M, Yi H, Jilani G, Javed R (2019) Cryptic footprints of rare earth elements on natural resources and living organisms. Environ Int 127:785–800. https://doi.org/10.1016/j.envint.2019.03.022

    Article  CAS  Google Scholar 

  • Aguilera A, Bautista F, Gutiérrez-Ruiz M, Ceniceros-Gómez AE, Cejudo R, Goguitchaichvili A (2021) Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environ Monit Assess 193:1–16

    Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (Brassica juncea L.) plants. Fresenius Environ Bull 21(10):2953–2961

    CAS  Google Scholar 

  • Ahmad J, Bashir H, Bagheri R, Baig A, Al-Huqail A, Ibrahim MM, Qureshi MI (2017) Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS ONE 12(9):0185118

    Article  Google Scholar 

  • Ahmed S, Sardar R (2023) Improvement in growth and physiochemical attributes of Raphanus sativus L through exogenous application of 28-Homobrassinolide under nickel stress. Sci Horti 311:111791

    Article  CAS  Google Scholar 

  • Ai TN, Naing AH, Yun BW, Lim SH, Kim CK (2018) Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Front Plant Sci 9:1388

    Article  Google Scholar 

  • Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, Ashcroft FM (2009) SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philosoph Transact Royal Soc b: Biol Sci 364(1514):257–267

    Article  CAS  Google Scholar 

  • Akpor OB, Okolomike UF, Olaolu DT, Aderiye BI (2014) Remediation of polluted wastewater effluents: hydrocarbon removal. Trends Appl Sci Res 9(4):160–173

    Article  Google Scholar 

  • Ali S, Rizwan M, Ibrahim M, Nafees M, Waseem M (2017) Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity. In Probiotics in agroecosystem (pp. 517–537). Springer, Singapore.

  • Ali M, Husain Q, Ishqi HM (2019) Fungal Peroxidases Mediated Bioremediation of Industrial Pollutants, Fungal Bioremediation. CRC Press 1st edition 40

  • Ali H, Khan E (2018) What are heavy metals? There is a long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol Environ Chem 100(1):6–19

    Article  CAS  Google Scholar 

  • Alina M, Azrina A, Mohd Yunus AS, Mohd Zakiuddin S, Eff MI, endi H, Muhammad Rizal R, (2012) Heavy metals (mercury, arsenic, cadmium, and plumbum) in selected marine fish and shellfish along the Straits of Ma-lacca. Int Food Res J 19(1):135–140

    CAS  Google Scholar 

  • Aljahdali MO, Alhassan AB (2020) Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: a case study of Avicennia marina L. in the Rabigh lagoon. Red Sea. Saudi J Biol Sci 27(4):1174–1184

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, Netherlands, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Alloway BJ ed (2012) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Science & Business Media. 22. ISBN: 9400744706.

  • Alyazouri A, Jewsbury R, Tayim H, Humphreys P, Al-Sayah MH (2020) Uptake of chromium by portulaca oleracea from soil: effects of organic content, pH, and sulphate concentration. Appl Environ Soil Sci 10:2020. https://doi.org/10.1155/2020/3620726

    Article  CAS  Google Scholar 

  • Amari A, Mohammed Alzahrani F, Mohammedsaleh Katubi K, Salem Alsaiari N, Tahoon MA, Ben Rebah F (2021) Clay-polymer nanocomposites: preparations and utilization for pollutants removal. Materials 14(6):1365. https://doi.org/10.3390/ma14061365

    Article  CAS  Google Scholar 

  • Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R (2021) Metal and Metalloid toxicity in plants: an overview on molecular aspects. Plant 10(4):635. https://doi.org/10.3390/plants10040635

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anwar A, Kim JK (2020) Transgenic breeding approaches for improving abiotic stress tolerance: recent progredss and future perspectives. IJMS 21(8):2695

    Article  CAS  Google Scholar 

  • Appenroth KJ (2010) Definition of “heavy metals” and their role in biological systems. Heavy Metals Soil. https://doi.org/10.1007/978-3-642-02436-8_2

    Article  Google Scholar 

  • Arif N, Sharma NC, Yadav V, Ramawat N, Dubey NK, Tripathi DK, Chauhan DK, Sahi S (2019) Understanding heavy metal stress in a rice crop: toxicity, tolerance mechanisms, and amelioration strategies. J Plant Biol 62:239–253. https://doi.org/10.1007/s12374-019-0112-4

    Article  CAS  Google Scholar 

  • Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G (2020) Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Marine Pollut Bullet 159:111496

    Article  CAS  Google Scholar 

  • Ascar L, Ahumada I, Richter P (2008) Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere 72:1548–1552. https://doi.org/10.1016/j.chemosphere.2008.04.056

    Article  CAS  Google Scholar 

  • Asgher M, Khan NA, Khan MIR (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA (2015a) Minimizing toxicity of cadmium in plants – role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Fatma M (2015b) Potentiality of ethylene in sulfur-mediated counteracting adverse effects of cadmium in plants. In: Chakraborty U, Chakraborty BN (eds) Abiotic stresses in crop plants. CAB International, UK, pp 136–163

    Chapter  Google Scholar 

  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA (2020) Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Front Plant Sci 11:2248. https://doi.org/10.3389/fpls.2020.587785

    Article  Google Scholar 

  • Atta K, Pal AK, Jana K (2021) Effects of salinity, drought and heavy metal stress during seed germination stage in ricebean [Vigna umbellata (Thunb.) Ohwi and Ohashi]. Plant Physiol Rep 26:109–115. https://doi.org/10.1007/s40502-020-00542-4

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94. https://doi.org/10.3390/ijerph14010094

    Article  CAS  Google Scholar 

  • Azizur Rahman M, Hasegawa H, Mahfuzur Rahman M, Nazrul Islam M, Majid Miah MA, Tasmen A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67(6):1072–1079. https://doi.org/10.1016/j.chemosphere.2006.11.061

    Article  CAS  Google Scholar 

  • Bai J, Zhao Q, Wang W, Wang X, Jia J, Cui B (2019) Arsenic and heavy metals pollution along a salinity gradient in drained coastal wetland soils: depth distributions, sources and toxic risks. Ecol Indic 96:91–98. https://doi.org/10.1016/j.ecolind.2018.08.026

    Article  CAS  Google Scholar 

  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharma 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  Google Scholar 

  • Baltas H, Sirin M, Gökbayrak E, Ozcelik AE (2020) A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province. Turkey Chemosphere 241:125015

    Article  CAS  Google Scholar 

  • Bandowe BAM, Bigalke M, Boamah L, Nyarko E, Saalia FK, Wilcke W (2014) Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environ Int 65:135–146. https://doi.org/10.1016/j.envint.2013.12.018

    Article  CAS  Google Scholar 

  • Banerjee S, Islam J, Mondal S, Saha A, Saha B, Sen A (2023) Proactive attenuation of arsenic-stress by nano-priming: Zinc Oxide Nanoparticles in Vigna mungo (L) Hepper trigger antioxidant defense response and reduce root-shoot arsenic translocation. J Hazard Mater 446:130735

    Article  CAS  Google Scholar 

  • Barbhuiya IH, Moulick D, Choudhury HA (2023) Role of phosphate in drought stress regulation in developing rice (Oryza sativa L.) seedlings. Cereal Res Commun. https://doi.org/10.1007/s42976-023-00400-7

    Article  Google Scholar 

  • Barrachina AC, Carbonell FB, Beneyto JM (1995) Arsenic uptake, distribution, and accumulation in tomato plants: Effect of arsenite on plant growth and yield. J Plant Nut 18(6):1237–1250. https://doi.org/10.1080/01904169509364975

    Article  Google Scholar 

  • Battersby J (2017) MDGs to SDGs—new goals, same gaps: the continued absence of urban food security in the post-2015 global development agenda. Afr Geogr Rev 36:115–129. https://doi.org/10.1080/19376812.2016.1208769

    Article  Google Scholar 

  • Beltagy AI (1984) Elemental geochemistry of some recent marine sediments from Red Sea. Bull Inst Oceanogr Fish Egypt 10:1–12

    Google Scholar 

  • Bergaya F, Detellier C, Lambert JF, Lagaly G (2013) Introduction to clay–polymer nanocomposites (CPN). In Dev Clay Sci 5:655–677. https://doi.org/10.1016/B978-0-08-098258-8.00020-1

    Article  CAS  Google Scholar 

  • Bhadra P, Maitra S, Shankar T, Hossain A, Praharaj S, Aftab T (2021) Climate change impact on plants: plant responses and adaptations. In: Aftab T, Roychoudhury A (eds) Plant perspectives to global climate changes. Academic Press, Elsevier Inc., pp 1–24

    Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: options for safe drinking water supply. Int J Water Resour Dev 13:79–92

    Article  Google Scholar 

  • Bhowmick S, Nath B, Halder D, Biswas A, Majumder S, Mondal P, Chakraborty S, Nriagu J, Bhattacharya P, Iglesias M, Roman-Ross G, Guha Mazumder DN, Bundschuh J, Chatterjee D (2012) Arsenic mobilization in the aquifers of three physiographic settings of West Bengal. Understanding geogenic and anthropogenic influences. J. Hazard. Mater, India. https://doi.org/10.1016/j.jhazmat.2012.07.014

    Book  Google Scholar 

  • Bhutia KL, Tyagi W (2017) Use of sequence specific nucleases for site specific modification of plant genome for crop improvement. Int J Agric Sci Res (IJASR) 7:491–502

    Google Scholar 

  • Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mole Sci 14(3):6382–6413

    Article  CAS  Google Scholar 

  • Bogs J, Bourbouloux A, Cagnac O (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure. Plant Cell Environ 26:1703–1711

    Article  CAS  Google Scholar 

  • Bractic AM, Majic DB, Samardzc JT, Maksimovic VR (2009) Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and upregulation under complexes stress stimuli. J Plant Physiol 166:996–1000

    Article  Google Scholar 

  • Bradl HB (2005) Sources and origins of heavy metals. In Interface Sci Technol Elsevier 6:1–27. https://doi.org/10.1016/S1573-4285(05)80020-1

    Article  CAS  Google Scholar 

  • Branzini A, Zubillaga MS (2013) Phytostabilization as soil remediation strategy. In Plant-Based Remediation Processes Springer, Berlin, Heidelberg.pp. 177–198.

  • Brown PH, Dunemann L, Schulz R, Marschner H (1989) Influence of redox potential and plant species on the uptake of nickel and cadmium from soils. Zeitschrift Für Pflanzenernährung Und Bodenkd 152:85–91. https://doi.org/10.1002/jpln.19891520116

    Article  CAS  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Gene Mole Biol 40:373–386

    Article  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz C, Vernon-Carter E (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867. https://doi.org/10.1016/j.biortech.2010.03.027

    Article  CAS  Google Scholar 

  • Burakova EA, Dyachkova TP, Rukhov AV, Tugolukov EN, Galunin EV, Tkachev AG, Ali I (2018) Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J Mole Liquid 253:340–346

    Article  CAS  Google Scholar 

  • Cagnac O, Bourbouloux A, Chakrabarty D (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol 135:1378–1138

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina A, Jugsujinda A, DeLaune RD (1999) The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil. Environ Int 25:613–618. https://doi.org/10.1016/S0160-4120(99)00027-6

    Article  CAS  Google Scholar 

  • Cataldo E, Salvi L, Paoli F, Fucile M, Masciandaro G, Manzi D, Masini CM, Mattii GB (2021) Application of zeolites in agriculture and other potential uses: a review. Agronomy. https://doi.org/10.3390/agronomy11081547

    Article  Google Scholar 

  • Catucci G, Valetti F, Sadeghi SJ, Gilardi G (2020) Biochemical features of dye-decolorizing peroxidases: current impact on lignin degradation. Biotechnol Appl Biochem 67(5):751–759. https://doi.org/10.1002/bab.2015. (Epub 2020 Sep 13)

    Article  CAS  Google Scholar 

  • Cavallini A, Natali L, Durante M, Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum) plants. Sci Total Environ 15:119–127

    Article  Google Scholar 

  • Cazale AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507(2):215–219

    Article  CAS  Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Poll J Environ Stud 15:375–382

    CAS  Google Scholar 

  • Chalubinski M, Kowalski ML (2006) Endocrine disrupters–potential modulators of the immune system and allergic response. Allergy 61(11):1326–35. https://doi.org/10.1111/j.1398-9995.2006.01135.x

    Article  CAS  Google Scholar 

  • Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. PCTOC 128(3):521–541

    Article  CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by _Pseudomonas putida_ CZ1. Colloids Surf b, Biointerfaces 46(2):101–107. https://doi.org/10.1016/j.colsurfb.2005.10.003

    Article  CAS  Google Scholar 

  • Chen HY, Teng YG, Lu SJ, Wang YY, Wang JS (2015a) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512–513:143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025

    Article  CAS  Google Scholar 

  • Chen Y, Liu Y, Ding Y, Wang X, Xu J (2015b) Overexpression of PtPCS enhances cadmium tolerance and cadmium accumulation in tobacco. PCTOC 121(2):389–396

    Article  CAS  Google Scholar 

  • Chen F, Chen X, Zhu F, Sun Q (2019) Study on the factors affecting the spatial distribution of heavy metal elements. In: IOP Conference Series: Earth Environ. https://doi.org/10.1088/1755-1315/330/4/042013.

  • Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut R 10:192–198. https://doi.org/10.1065/espr2002.11.141.1

    Article  CAS  Google Scholar 

  • Choudhury S, Moulick D, Mazumder MK (2021a) Secondary metabolites protect against metal and metalloid stress in rice: an in silico investigation using dehydroascorbate reductase. Acta Physiol Plantarum 43(1):1–10. https://doi.org/10.1007/s1173-020-03173-2

    Article  Google Scholar 

  • Choudhury S, Sharma P, Moulick D, Mazumder MK (2021b) Unrevealing metabolomics for abiotic stress adaptation and tolerance in plants. J Crop Sci Biotechnol. https://doi.org/10.1007/s12892-021-00102-8

    Article  Google Scholar 

  • Choudhury S, Mazumder MK, Moulick D, Sharma P, Tata SK, Ghosh D, Ali MH, Siddiqui HM, Brestic M, Skalický M, Hossain A (2022a) A Computational study of the role of secondary metabolites for mitigation of acid soil stress in cereals using dehydroascorbate and mono - dehydroascorbate reductases. Antioxidant 11(3):458. https://doi.org/10.3390/antiox11030458

    Article  CAS  Google Scholar 

  • Choudhury S, Moulick D, Ghosh D, Soliman M, Alkhedaide A, Gaber A, Hossain A (2022b) Drought-induced oxidative stress in pearl millet (Cenchrus americanus L.) at seedling stage: survival mechanisms through alteration of morphophysiological and antioxidants activity. Life 12(8):1171

    Article  CAS  Google Scholar 

  • Choudhury S, Moulick D, Mazumder MK, Pattnaik BK, Ghosh VLR, Aldhahrani A, Soliman MM, Gaber A, Hossain A (2022c) An in vitro and in silico perspective study of seed priming with zinc on the phytotoxicity and accumulation pattern of arsenic in rice seedlings. Antioxidant 11(8):1500. https://doi.org/10.3390/antiox11081500

    Article  CAS  Google Scholar 

  • Choudhury S, & Moulick D. (2022). Response of Field Crops to Abiotic Stress: Current Status and Future Prospects (1st ed.). CRC Press. https://doi.org/10.1201/9781003258063

  • Chowardhara B, Borgohain P, Saha B, Awasthi JP, Moulick D, Panda SK (2019a) Assessment of phytotoxicity of zinc on Indian mustard (Brassica juncea) varieties during germination and early seedling growth. Ann Plant Soil Res 21(3):239–244

    Google Scholar 

  • Chowardhara B, Borgohain P, Saha B, Awasthi JP, Moulick D, Panda SK (2019b) Phytotoxicity of Cd and Zn on three popular Indian mustard varieties during germination and early seedling growth. Biocatal Agric Biotechnol 21:101349. https://doi.org/10.1016/j.bcab.2019.101349

    Article  Google Scholar 

  • Chowardhara B, Saha B, Borgohain P, Awasthi JP, Panda SK (2021) Differential amelioration of cadmium toxicity by sodium nitroprusside and citric acid in Brassica juncea (L.) Czern and Coss. Biocatal Agric Biotechnol 35:102091

    Article  CAS  Google Scholar 

  • Chowardhara B, Saha B, Borgohain P, Awasthi JP, Kityania S, Panda SK (2022) Effect of ethanol, putresciene and acetic acid on cadmium accumulation and toxicity in Indian mustard. South African J Bot 147:42–52

    Article  CAS  Google Scholar 

  • Chrastný V, Vaněk A, Teper L, Cabala J, Procházka J, Pechar L, Drahota P, Penížek V, Komárek M, Novák M (2012) Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Environ Monit Assess 184:2517–2536. https://doi.org/10.1007/s10661-011-2135-2

    Article  CAS  Google Scholar 

  • Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signalling. Curr Opin Plant Biol 16(3):293–300

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochim 88(11):1707–1719

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18(12):3325–3333

    Article  CAS  Google Scholar 

  • FAO-Food and Agriculture Organization of the United Nations,. Codex general standard for contaminants and toxins in food and feed (codex stan193–1995). 1995,44. 〈http://www.fao.org/fileadmin/user_upload/livestockgov/documents/1_CXS_193e. pdf〉

  • Colella C (2007) “Chapter 27 - Natural Zeolites and Environment,” in Introduction to Zeolite Science and Practice, eds. J. Čejka, H. van Bekkum, A. Corma, and F. B. T.-S. in S. S. and C. Schüth (Elsevier), 999–1035. https://doi.org/10.1016/S0167-2991(07)80815-9.

  • Confalonieri M, Carelli M, Tava A, Borrelli L (2019) Overexpression of MtTdp2α (tyrosyl-DNA phosphodiesterase 2) gene confers salt tolerance in transgenic Medicago truncatula. PCTOC 137(1):157–172

    Article  CAS  Google Scholar 

  • Corwin DL, Lesch SM (2005) Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric 46:11–43. https://doi.org/10.1016/j.compag.2004.10.005

    Article  Google Scholar 

  • Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A Brief Review Environ Technol Innov 8:309–326

    Article  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715. https://doi.org/10.1104/pp.110.3.715

    Article  CAS  Google Scholar 

  • Cuypers A, Remans T, Weyens N, Colpaert J, Vassilev A, Vangronsveld J (2013) Soil-plant relationships of heavy metals and metalloids. In Heavy Metals in Soils. https://doi.org/10.1007/978-94-007-4470-7_6

    Article  Google Scholar 

  • da Rosa CR, Faversani J, Ceretta CA, Ferreira PAA, Marchezan C, Facco DB, Garlet LP, Silva JS, Comin JJ, Bizzi CA, Flores EMM (2018) Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization. Ecotoxicol Environ Safety 153:142–150. https://doi.org/10.1016/j.ecoenv.2018.01.046

    Article  CAS  Google Scholar 

  • Dabonne S, Koffi B, Kouadio E, Koffi A, Due E, Kouame L (2010) Traditional utensils: potential sources of poisoning by heavy metals. Br J Pharm Toxicol 1:90–92

    Google Scholar 

  • Dai C, Shen H, Duan Y, Liu S, Zhou F, Wu D, Zhong G, Javadi A, Tu Y (2019) TiO2 and SiO2 Nanoparticles combined with surfactants mitigate the Toxicity of Cd2+ to wheat seedlings. Water Air Soil Pollut 230:1–10. https://doi.org/10.1007/s11270-019-4297-4

    Article  CAS  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein-encoding gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    Article  CAS  Google Scholar 

  • Deb P, Mandal A, Harendra SR, Choudhury SR, Das A, Hazra S, Mukherjee A, Ghosh D, Choudhury S, Santra SC, Moulick D (2023) Improving plant nutrient use efficiency for climate-resilient agriculture. Climate-resilient agriculture, vol 2: Agro-biotechnological advancement for crop production. Springer International Publishing, Cham, pp 209–243

    Chapter  Google Scholar 

  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168. https://doi.org/10.1016/j.chemosphere.2004.01.028

    Article  CAS  Google Scholar 

  • de Matos AT, Fontes MPF, da Costa LM, Martinez MA (2001) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Pollut 111:429–435. https://doi.org/10.1016/S0269-7491(00)00088-9

    Article  Google Scholar 

  • Dehghani MH, Sanaei D, Ali I, Bhatnagar A (2016) Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modelling and isotherm studies. J Mole Liquid 215:671–679

    Article  CAS  Google Scholar 

  • Dermont G, Bergeron M, Richer-Laflèche M, Mercier G (2010) Remediation of metal-contaminated urban soil using flotation technique. Sci Total Environ 408(5):1199–1211. https://doi.org/10.1016/j.scitotenv.2009.11.036

    Article  CAS  Google Scholar 

  • Dhiman S, Ibrahim M, Devi K, Sharma N, Kapoor N, Kaur R, Sharma N, Tikoria R, Ohri P, Mir BA, Bhardwaj R (2021) Biochar assisted remediation of toxic metals and metalloids. Handb Assist Amendment: Enhanced Sustain Remediat Technol 6:131–62

    Google Scholar 

  • Diagomanolin V, Farhang M, Ghazi-Khansari M, Jafarzadeh N (2004) Heavy metals (Ni, Cr, Cu) in the karoon waterway river. Iran Toxicol Letters 151(1):63–67

    Article  CAS  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plantarum 35(4):1281–1289. https://doi.org/10.1007/s11738-012-1167-8

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Dong Y, Ziegler K (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  Google Scholar 

  • Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione–linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164

    Article  CAS  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 6(1):e16360

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustain 7(2):2189–2212

    Article  Google Scholar 

  • Dong G, Wang Y, Gong L, Wang M, Wang H, He N, Zheng Y, Li Q (2013) Formation of soluble Cr (III) end-products and nanoparticles during Cr (VI) reduction by Bacillus cereus strain XMCr-6. Biochem Eng J 15(70):166–72. https://doi.org/10.1016/j.bej.2012.11.002

    Article  CAS  Google Scholar 

  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Polish J Environ Stud 10(1):1–10

    CAS  Google Scholar 

  • Duxbury JM, Mayer AB, Lauren JG, Hassan N (2003) Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. J Environ Sci Health 38(1):61–69. https://doi.org/10.1081/ese-120016881

    Article  CAS  Google Scholar 

  • Edirisinghe EMRKB, Jinadasa BKKK (2019) Arsenic and cadmium concentrations in legumes and cereals grown in the North Central Province, Sri Lanka and assessment of their health risk. Int J Food Cont 6(1):1–5. https://doi.org/10.1186/s40550-019-0073-x

    Article  Google Scholar 

  • El-Sorogy AS, Abdelwahab M, Nour H (2012) Heavy metals contamination of the quaternary coral reefs. Red Seacoast Egypt Environ Earth Sci 67:777–785

    Article  CAS  Google Scholar 

  • El-Sorogy AS, ElKammar A, Ziko A, Aly M, Nour H (2013) Gastropod shells as pollution indicators, Red Seacoast. Egypt J Afr Earth Sci 87:93–99

    Article  CAS  Google Scholar 

  • El-Sorogy AS, Abdel-Wahab M, Ziko A, Shehata W (2016) Impact of some trace metals on bryozoan occurrences, Red Seacoast. Egypt Indian J Geomar Sci 45(1):86–99

    Google Scholar 

  • EPA- U.S. (2007) Environmental Protection Agency, Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. 30. 〈https://www.epa.gov/hw-sw846/sw-846-test-method-3051amicrowave-assisted-acid-digestion-sediments- sludges-soils-and-oils〉.

  • Essa MH, Mu’azu ND, Lukman S, Bukhari A (2013) Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity. Sci World J. https://doi.org/10.1155/2013/618495

    Article  Google Scholar 

  • Faè M, Balestrazzi A, Confalonieri M, Donà M, Macovei A, Valassi A, Carbonera D (2014) Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2) in Medicago truncatula plants. Plant Cell Rep 33(7):1071–1080

    Article  Google Scholar 

  • Faisal M, Hasnain S (2004) Comparative study of Cr(VI) uptake and reduction in industrial effluent by Ochrobacterium intermedium and Brevibacterium sp. Biotechnol Lett 26(21):1623–1628. https://doi.org/10.1007/s10529-004-3184-1

    Article  CAS  Google Scholar 

  • Fang L, Cong-Qiang L, Shi-lu W, Zheng-jie Z (2012) Soil temperature and moisture controls on surface fluxes and profile concentrations of greenhouse gases in karst area in central part of Guizhou Province, southwest China. Environ Earth Sci 67:431–1439. https://doi.org/10.1007/s12665-012-1588-0

    Article  CAS  Google Scholar 

  • FAO/WHO,(2011). Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Fifth Session. 64–89

  • FAO/WHO (Food and Agriculture Organization/World Health Organization), (2017) Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Codex Alimentarius Commission.

  • Fard RF, Azimi AA, Bidhendi GN (2011) Batch kinetics and isotherms for biosorption of cadmium onto biosolids. Desalinat Water Treat 28(1–3):69–74

    Article  CAS  Google Scholar 

  • Farooqi ZR, Zafar Iqbal M, Kabir M, Shafiq M (2009) Toxic effects of lead and cadmium on germination and seedling growth of Albizia Lebbeck (L.) Benth. Pak J Bot 41(1):27–33

    CAS  Google Scholar 

  • Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41(5):1201–1232

    Article  CAS  Google Scholar 

  • Fatemi H, Pour BE, Rizwan M (2020) Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environ Poll 266(3):114982

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J hazard Mater 162(2–3):616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042

    Article  CAS  Google Scholar 

  • Fouladi M, Mohammadiroozbahani M, Attar Roshan S, Sabzalipour S (2021) Health risk assessment and determination of heavy metal contamination in barley grains in khuzestan province. Iran. Arch Hyg Sci 10(2):163–170

    Article  CAS  Google Scholar 

  • Fox TD (2012) Mitochondrial protein synthesis, import, and assembly. Genetics 192(4):1203–1234. https://doi.org/10.1534/genetics.112.141267

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  • Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63

    Article  Google Scholar 

  • Friberg L, Piscator M, Nordberg G (1971) The Itai-itai disease. Cadmium in the environment. Ohio: CRC press, 111–114

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2–4):109–119

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Wang Y, Xia J, Zhou P (2012) Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency of Solanum nigrum L. in Cd-and Pb-contaminated soil. Environ Technol 33:1383–1389

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Europ J Mineral Processing Environ Protection 3(1):58–66

    Google Scholar 

  • Garcıa-Hernández M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118(2):387–397

    Article  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 12:635–647

    Article  CAS  Google Scholar 

  • Gautam PK, Gautam RK, Banerjee S, Chattopadhyaya MC, Pandey JD (2016) Heavy metals in the environment: fate, transport, toxicity and remediation technologies. Nova Sci Publishers 60:101–130

    Google Scholar 

  • Ghani A (2010) Effect of cadmium toxicity on the growth and yield components of Mungbean [Vigna radiate (L.) Wilczek]. World Appl Sci J 8:26–29

    CAS  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16(3):1807–1828

    Article  CAS  Google Scholar 

  • Ghosh D, Brahmachari K, Brestic M, Ondrisik P, Hossain A, Skalicky M, Sarkar S, Moulick D, Dinda NK, Das A, Pramanick B (2020a) Integrated weed and nutrient management improve yield, nutrient uptake and economics of maize in the rice-maize cropping system of Eastern India. Agron 10(12):1906. https://doi.org/10.3390/agronomy10121906

    Article  CAS  Google Scholar 

  • Ghosh D, Brahmachari K, Skalicky M, Hossain A, Sarkar S, Dinda NK, Das A, Pramanick B, Moulick D, Brestic M, Raza MA (2020b) Nutrients supplementation through organic manures influence the growth of weeds and maize productivity. Mol 25(21):4924. https://doi.org/10.3390/molecules25214924

    Article  CAS  Google Scholar 

  • Ghosh D, Brahmachari K, Das A, Hassan MM, Mukherjee PK, Sarkar S, Dinda NK, Pramanick B, Moulick D, Maitra S, Hossain A (2021) Assessment of energy budgeting and its indicator for sustainable nutrient and weed management in a rice-maize-green gram cropping system. Agron 11(1):166. https://doi.org/10.3390/agronomy11010166

    Article  CAS  Google Scholar 

  • Ghosh D, Brahmachari K, Sarkar S, Dinda NK, Das A, Moulick D (2022a) Impact of nutrient management in rice-maize-greengram cropping system and integrated weed management treatments on summer greengram productivity. Ind J Weed Sci 54(1):25–30. https://doi.org/10.5958/0974-8164.2022.00004.1

    Article  Google Scholar 

  • Ghosh D, Brahmachari K, Skalický M, Roy D, Das A, Sarkar S, Moulick D, Brestič M, Hejnak V, Vachova P, Hassan MM, Hossain A (2022b) The combination of organic and inorganic fertilizers influence the weed growth, productivity and soil fertility of monsoon rice. PLoS ONE 17(1):e0262586. https://doi.org/10.1371/journal.pone.0262586

    Article  CAS  Google Scholar 

  • Ghosh S, Bhattacharya J, Nitnavare R, Webster TJ (2022c) Heavy metal removal by Bacillus for sustainable agriculture. In Bacilli in Agrobiotechnol. https://doi.org/10.1007/978-3-030-85465-2_1

    Article  Google Scholar 

  • Ghosh S, Sarkar S, Garai S, Roy A, Saha S, Dey S, Santra SC, Moulick D, Mondal M, Brahmachari K (2023) Climate change and global crop production: an inclusive insight. Climate-resilient agriculture, vol 2. Agro-biotechnological advancement for crop production. Springer International Publishing, Cham, pp 1–34. https://doi.org/10.1007/978-3-031-37428-9_1

    Chapter  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414. https://doi.org/10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  • Gohari M, Habib-Zadeh AR, Khayat M (2012) Assessing the intensity of tolerance to lead and its effect on amount of protein and proline in root and aerial parts of two varieties of rape seed (Brassica napus L.). J Basic Appl Sci Res 2(1):935–938

    Google Scholar 

  • Goji T, Takahara K, Negishi M, Katoh H (2017) Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. J Biol Chem 292(48):19721–32. https://doi.org/10.1074/jbc.M117.814392

    Article  CAS  Google Scholar 

  • Goyal D, Yadav A, Prasad M, Singh TB, Shrivastav P, Ali A, Dantu PK, Mishra S (2020) Effect of heavy metals on plant growth: an overview. Contamin Agric. https://doi.org/10.1007/978-3-030-41552-5_4

    Article  Google Scholar 

  • Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Marine Poll Bull 45(1–12):46–52. https://doi.org/10.1016/S0025-326X(01)00323-X

    Article  CAS  Google Scholar 

  • Grill E, Loeffler S, Winnacker EL, Zenk MH (1989) Phytochelatins the heavy metals binding peptides of plants are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyltranspeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  CAS  Google Scholar 

  • Grill E, Mishra S, Srivastava S, Tripathi RD (2007) Role of phytochelatins in phytoremediation of heavy metals. Environ Bioremed Technol. https://doi.org/10.1007/978-3-540-34793-4_5

    Article  Google Scholar 

  • Gu CS, Liu LQ, Deng YM, Zhu XD, Huang SZ, Lu XQ (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IIMT2b, gene enhances copper tolerance in Arabidopsis thaliana. Bull Environ Cont Toxic 94:247–253

    Article  CAS  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76(5):623–630

    Article  CAS  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  CAS  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hhazardous Mat 199:309–313

    Article  Google Scholar 

  • Gupta A, Phung LT, Chakravarty L, Silver S (1999) Mercury resistance in Bacillus cereus RC607: transcriptional organization and two new open reading frames. J Bacteriol 181(22):7080–7086. https://doi.org/10.1128/jb.181.22.7080-7086.1999

    Article  CAS  Google Scholar 

  • Gupta N, Yadav KK, Kumar V, Krishnan S, Kumar S, Nejad ZD, Khan MM, Alam J (2021) Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environ Toxicol Pharmacol 82:103563

    Article  CAS  Google Scholar 

  • Hakami O, Zhang Y, Banks CJ (2012) Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res 46(12):3913–3922. https://doi.org/10.1016/j.watres.2012.04.032

    Article  CAS  Google Scholar 

  • Halder D, Bhowmick S, Biswas A, Chatterjee D, Nriagu J, Guha Mazumder DN, Šlejkovec Z, Jacks G, Bhattacharya P (2013) Risk of arsenic exposure from drinking water and dietary components: implications for riskmanagement in rural Bengal. Environ Sci Technol 47(2):1120–1127. https://doi.org/10.1021/es303522s

    Article  CAS  Google Scholar 

  • Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51(10):1627–1637

    Article  CAS  Google Scholar 

  • Hasan MM, Uddin MN, Ara-Sharmeen I, F. Alharby H, Alzahrani Y, Hakeem KR, Zhang L. (2019) Assisting phytoremediation of heavy metals using chemical amendments. Plants 8(9):295

    Article  CAS  Google Scholar 

  • Hasan AB, Reza AHM, Kabir S, Siddique M, Bakar A, Ahsan M, Akbor M (2020) Accumulation and distribution of heavy metals in soil and food crops around the ship breaking area in southern Bangladesh and associated health risk assessment. SN Appl Sci 2:155. https://doi.org/10.1007/s42452-019-1933-y

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Ka SO (2011) Plant-metallothioneins-metal chelators with ROS scavenging activity. Plant Biol 13:225–232

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Ahmad A (2013) Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot. Croatica. 72(2):323–335

    Article  CAS  Google Scholar 

  • Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S (2023) Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. Plant Physiol Biochem 203:107940

    Article  CAS  Google Scholar 

  • Hechmi S, Hamdi H, Mokni-Tlili S, Ghorbel M, Khelil MN, Zoghlami IR, Benzarti S, Jellali S, Hassen A, Jedidi N (2020) Impact of urban sewage sludge on soil physico-chemical properties and phytotoxicity as influenced by soil texture and reuse conditions. J Environ Qual 49:973–986. https://doi.org/10.1002/jeq2.20093

    Article  CAS  Google Scholar 

  • Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. Plant Physiol 159(3):1125–1137

    Article  CAS  Google Scholar 

  • Hellou J, Ross NW, Moon TW (2012) Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ Sci Poll Res 19(6):2007–2023

    Article  CAS  Google Scholar 

  • Henao SG, Herrera TG (2021) Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front Environ Sci 9:604216. https://doi.org/10.3389/fenvs.2021.604216

    Article  Google Scholar 

  • Henson MC, Chedrese PJ (2004) Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med 229(5):83–392. https://doi.org/10.1177/153537020422900506

    Article  Google Scholar 

  • Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100(6):593–599

    Article  CAS  Google Scholar 

  • Hong Y, Li D, Xie C, Zheng X, Yin J, Li Z, Zhang K, Jiao Y, Wang B, Hu Y, Zhu Z (2022) Combined apatite, biochar, and organic fertilizer application for heavy metal cocontaminated soil remediation reduces heavy metal transport and alters soil microbial community structure. Sci Total Environ 851:158033. https://doi.org/10.1016/j.scitotenv.2022.158033

    Article  CAS  Google Scholar 

  • Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H (2016) Optimal soil Eh, pH, and water management for simultaneously, minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol 50:4178–4185. https://doi.org/10.1021/acs.est.5b05424

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, Jaime A, da Silva T, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Botany. https://doi.org/10.1155/2012/872875

    Article  Google Scholar 

  • Hossain A, Ahmad Z, Moulik D, Maitra S, Bhadra P, Ahmad A, Garai S, Mondal M, Roy A, Sabagh AE, Aftab T (2021a) Jasmonates and salicylates: mechanisms, transport and signalling during abiotic stress in plants. Jasmon Salicylates Signal Plants. https://doi.org/10.1007/978-3-030-75805-9_1

    Article  Google Scholar 

  • Hossain A, Ahmed S, Ahmad Z, Alam MJ, Moulick D, Saha B, Samanta S, Maitra S, Bhadra P, Bukhari MA, Aftab T (2021b) Next-generation genetic engineering tools for abiotic stress tolerance in plants. In Front Plant-Soil Interact. https://doi.org/10.1016/B978-0-323-90943-3.00008-0

    Article  Google Scholar 

  • Hossain A, Maitra S, Pramanick B, Bhutia KL, Ahmad Z, Moulik D, Syed MA, Shankar T, Adeel M, Aftab HMM (2022b) Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. Academic Press, In plant perspectives to global climate changes. https://doi.org/10.1016/B978-0-323-85665-2.00011-X

    Book  Google Scholar 

  • Hossain A, Bhatt R, Sarkar S, Barman M, Majumder D, Saha S, Islam MI, Maitra S, Meena RS (2021a) Cost-Effective and Eco-Friendly Agricultural Technologies in Rice‒Wheat Cropping Systems for Food and Environmental Security. In: M. K. Jhariya et al. (eds.), Sustainable Intensification for Agroecosystem Services and Management, Springer Nature Singapore Pte Ltd., 69–96, https://doi.org/10.1007/978-981-16-3207-5_3.

  • Hossain A, Maitra S, Garai S, Mondal M, Ahmed A, Islam MT, Nayak J (2022a) Farming for Food and Nutritional Safety in the Modern Era of Climate Change. In: Aftab, T., Hakeem, K.R. (Eds.) Plant Abiotic Stress Physiology, Volume 1: Responses and Adaptations, 225–291

  • Hossain, A., Maitra, S., Sarker, S., Al Mahmud, A., Ahmad, Z., Emon, R.M., Vemuri, H., Malek, M.A., Alam, M.A., Rahman, M.A. and Alam, M.J., 2023. Aluminium stress in plants: consequences and mitigation mechanisms. In: Beneficial Chemical Elements of Plants: Recent Developments and Future Prospects, pp.123-168

  • Hristozov D, Malsch I, Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustain 1:1161–1194. https://doi.org/10.3390/su1041161

    Article  CAS  Google Scholar 

  • Hu KL, Zhang FR, Li H, Huang F, Li BG (2006) Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing1 1project supported by the national natural science foundation of China (Nos. 40401025 and 49871005) and the program for changjiang scholars and innovative research team in Un. Pedosphere 16:690–698. https://doi.org/10.1016/S1002-0160(06)60104-5

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77(7):1026–1029

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99:86–92

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS, Ying GG (2011) Cadmium inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorhiza), its encoding protein shows metal-binding ability. J Exp Mar Biol Ecol 405:128–132

    Article  CAS  Google Scholar 

  • Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158(4):1779–1788

    Article  CAS  Google Scholar 

  • Huq SI, Ara QA, Islam K, Zaher A, Naidu R (2001) The possible contamination from arsenic through food chain. Groundwater Arsen Contaminat Bengal Delta Plain Bangladesh 3084:91–96

    Google Scholar 

  • Huq SI, Joardar JC, Parvin S, Correll R, Naidu R (2006) Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr 24(3):305

    Google Scholar 

  • Hussain B, Ashraf MN, Shafeeq-ur-Rahman AA, Li J, Farooq M (2021) Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci Total Environ 754:142188. https://doi.org/10.1016/j.scitotenv.2020.142188

    Article  CAS  Google Scholar 

  • Hussain S, Yang J, Hussain J, Sattar A, Ullah S, Hussain I, Rahman SU, Zandi P, Xia X, Zhang L (2022a) Mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil-wheat systems. Sci Total Environ 847:157432. https://doi.org/10.1016/j.scitotenv.2022.157432

    Article  CAS  Google Scholar 

  • Hussain S, Yang J, Hussain J, Sattar A, Ullah S, Hussain I, Rahman SU, Zandi P, Xia X, Zhang L (2022b) Mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil–wheat systems. Sci Total Environ 847:157432. https://doi.org/10.1016/j.scitotenv.2022.157432

    Article  CAS  Google Scholar 

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211

    Article  CAS  Google Scholar 

  • Ihedioha JN, Okoye CO, Onyechi UA (2014) Health risk assessment of zinc, chromium, and nickel from cow meat consumption in an urban Nigerian population. Int Occupat Environ Health 20(4):281–288

    Article  CAS  Google Scholar 

  • Indraratne SP, Attanayake CP, Kumaragamage D et al (2023) Mobility of arsenic and vanadium in waterlogged calcareous soils due to addition of zeolite and manganese oxide amendments. J Environ Qual 52:380–392. https://doi.org/10.1002/jeq2.20451

    Article  CAS  Google Scholar 

  • Iqbal M, Ahmad A, Ansari MK, Qureshi MI, Aref IM, Khan PR, Hegazy SS, El- Atta H, Husen A, Hakeem KR (2014) Improving the phytoextraction capacity of plants to scavenge metal (loid)-contaminated sites. Environ Rev 23(1):44–65

    Article  Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signalling: perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133

    Article  CAS  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–8. https://doi.org/10.1038/nature08467

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. African J Biotechnol 8(6)

  • Jafari A, Ghaderpoori M, Kamarehi B, Abdipour H (2019) Soil pollution evaluation and health risk assessment of heavy metals around Douroud cement factory. Iran Environ Earth Sci 78:1–9

    CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60

    Article  Google Scholar 

  • Jali P, Pradhan C, Das AB (2016) Effects of cadmium toxicity in plants: a review article. Sch Acad J Bio-Sci 4:1074–1081

    CAS  Google Scholar 

  • Jamai A, Tommasini R, Martinoia E (1996) Characterization of glutathione uptake in broad bean leaf protoplasts. Plant Physiol 111(4):1145–1152

    Article  CAS  Google Scholar 

  • Jang MG, Kim YJ, Jang GH, Sukweenadhi J, Kwon WS, Yang DC (2014) Ectopic overexpression of the aluminum-induced protein-encoding gene from Panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis. Plant Cell, Tissue Organ Cul 119(1):95–106

    Article  CAS  Google Scholar 

  • Jatav KS, Singh RP, Mishra JK, Chauhan AKS (2012) Phytoremediation–an emerging green technology for removal of pollutants from soil and water resources. Indian J Life Sci 2(1):133–137

    Google Scholar 

  • Javaid S, uz Zaman Q, Sultan K, Riaz U, Aslam A, Saba Sharif NE, Aslam S, Jamil A, Ibraheem S. (2020) Heavy metals stress, mechanism and remediation techniques in rice (Oryza sativa L.): a review. Pure Appl Biol (PAB) 9(1):403–26. https://doi.org/10.19045/bspab.2020.90045

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Zhong M, Wang FH, Zhang LM, Zhu YG (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47(7):3141–3148

    Article  CAS  Google Scholar 

  • Jian C, Yang Z, Su Y, Han FX, Monts DL (2011) Phytoremediation of heavy metal/metalloid-contaminated soils. Contaminated Soils: Environmental Impact, Disposal and Treatment., Ed: Robert V. Steinberg.pp 180–206

  • Jiang K, Asami T (2018) Chemical regulators of plant hormones and their applications in basic research and agriculture. Biosci Biotechnol Biochem 82(8):1265–1300

    Article  CAS  Google Scholar 

  • Jiang W, Zhang S, Shan XQ, Feng M, Zhu YG, McLaren RG (2005) Adsorption of arsenate on soils. Part 2: Modelling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils. Environ Pollut 138:285–289. https://doi.org/10.1016/j.envpol.2005.03.008

    Article  CAS  Google Scholar 

  • Jiang QQ, Sun XL, Cao H, Zou YM, Shu HR (2013) Isolation and expression analysis of a phytochelatin synthase gene (MhPCS) from Malus hupehensis. J Fruit Sci 3:341–347

    Google Scholar 

  • Jonathan M, Srinivasalu S, Thangadurai N, Ayyamperumal T, Armstrong-Altrin J, Ram-Mohan V (2008) Contamination of Uppanar River and coastal waters off Cuddalore, Southeast coast of India. Environ Geol 53:1391–1404. https://doi.org/10.1007/s00254-007-0748-0

    Article  CAS  Google Scholar 

  • Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors 8(4):2413–2423. https://doi.org/10.3390/s8042413

    Article  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Reviews in Environ Sci Biotechnol 9(3):215–288

    Article  CAS  Google Scholar 

  • Kader J, Sannasi P, Othman O, Ismail BS, Salmijah S (2007) Removal of Cr (VI) from aqueous solutions by growing and nongrowing populations of environmental bacterial consortia. Global J Environ Res 1(1):12–17

    Google Scholar 

  • Kahal AY, El-Sorogy AS, Alfaifi HJ, Almadani S, Ghrefat HA (2018) Spatial distribution and ecological risk assessment of the coastal surface sediments from the Red Sea, northwest Saudi Arabia. Marine Pollut Bullet 137:198–208

    Article  CAS  Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894

    CAS  Google Scholar 

  • Kamaludeen SPB, Arunkumar KR, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Indian J Exp Biol 41:972–985

    CAS  Google Scholar 

  • Kananke T, Wansapala J, Gunaratne A (2014) Heavy metal contamination in green leafy vegetables collected from selected market sites of Piliyandala area, Colombo District, Sri Lanka. Am J Food Sci Technol 2(5):139–144

    Article  Google Scholar 

  • Kanwal A, Farhan M, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ (2020) Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Sci Rep 10(1):11361. https://doi.org/10.1038/s41598-020-68208-7

    Article  CAS  Google Scholar 

  • Kao CH (2015) Role of glutathione in abiotic stress tolerance of rice plants. J Taiwan Agric Res 164:167–176

    Google Scholar 

  • Kapahi M, Sachdeva S (2019) Bioremediation options for heavy metal pollution. J Health Pollut 9(24):191203. https://doi.org/10.5696/2156-9614-9.24.191203

    Article  Google Scholar 

  • Karimi A, Khodaverdiloo H, Sepehri M, Sadaghiani MR (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Afr J Microbiol Res 5(13):1571–1576

    CAS  Google Scholar 

  • Karimyan K, Alimohammadi M, Maleki A, Yunesian M, Nodehi RN, Foroushani AR (2020) The mobility of arsenic from highly polluted farmlands to wheat: soil-plant transfer model and health risk assessment. Land Degrad Develop 31(12):1560–1572

    Article  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  Google Scholar 

  • Khan M, Daud MK, Basharat A, Khan MJ, Azizullah A, Muhammad N, Muhammad N, Rehman Z, Zhu SJ (2016) Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. Environ Sci Pollut Res 23(9):8431–8440

    Article  CAS  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601:1591–1605

    Article  Google Scholar 

  • Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25(9):1542–1546. https://doi.org/10.4014/jmb.1504.04067

    Article  CAS  Google Scholar 

  • King LD (1988) Retention of metals by several soils of the Southeastern United States. J Environ Qual 17:239–246. https://doi.org/10.2134/jeq1988.00472425001700020013x

    Article  CAS  Google Scholar 

  • Kinuthia GK, Ngure V, Beti D, Lugalia R, Wangila A, Kamau L (2020) Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-65359-5

    Article  CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220

    Article  CAS  Google Scholar 

  • Kohli A, González-Melendi P, Abranches R, Capell T, Stoger E, Christou P (2006) The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signal Behav 1(4):185–195

    Article  Google Scholar 

  • Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE, Lemaux PG (2001) Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125(3):1354–1362

    Article  CAS  Google Scholar 

  • Koptsik G (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47:923–939. https://doi.org/10.1134/S1064229314090075

    Article  CAS  Google Scholar 

  • Kou TJ, Yu WW, Lam SK, Chen DL, Hou YP, Li ZY (2018) Differential root responses in two cultivars of winter wheat (Triticum aestivum L.) to elevated ozone concentration under fully open-air field conditions. J Agron Crop Sci 204(3):325–332

    Article  CAS  Google Scholar 

  • Koutras GA, Schneider AS, Hattori M, Valentine WN (1965) Studies on chromated erythrocytes. Mechanisms of chromate inhibition of glutathione reductase. British J Haematol 11(3):360–369. https://doi.org/10.1111/j.1365-2141.1965.tb06596.x

    Article  CAS  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signalling crosstalks between biotic and abiotic stress responses. Int J Mole Sci 19(10):3206

    Article  Google Scholar 

  • Kubota H, Takenaka C (2003) Field Note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremediat 5:197–201. https://doi.org/10.1080/713779219

    Article  CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079

    Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  Google Scholar 

  • Kumar V, Suryakant P, Kumar S, Kumar N (2016) Effect of chromium toxicity on plants: a review. Agriways 4(1):107–120

    CAS  Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462. https://doi.org/10.1016/j.chemosphere.2018.10.066

    Article  CAS  Google Scholar 

  • Kumar S, Yadav A, Verma R, Dubey AK, Narayan S, Pandey A, Sanyal I (2022) Metallothionein (MT1): A molecular stress marker in chickpea enhances drought and heavy metal stress adaptive efficacy in transgenic plants. Environ Exp Bot 199:104871

    Article  CAS  Google Scholar 

  • Kumar S, Trivedi PK (2006) Heavy metal stress signalling in plants, in Plant Metal Interaction- Emerging Remediation Techniques, ed. P. Ahmad (Amsterdan: Elsevier), pp 585–603. doi: https://doi.org/10.1016/B978-0-12-803158-2.00025-4

  • Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estévez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20(1):29–36. https://doi.org/10.1016/j.sjbs.2012.09.001

    Article  CAS  Google Scholar 

  • LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29. https://doi.org/10.1016/S0169-1317(99)00017-4

    Article  CAS  Google Scholar 

  • Lenti K, Fodor F, Böddi B (2002) Mercury inhibits the activity of the NADPH:protochlorophyllide oxidoreductase (POR). Photosynthetica 40(1):145–151. https://doi.org/10.1023/A:1020143602973

    Article  CAS  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115. https://doi.org/10.1023/a:1022527330401

    Article  CAS  Google Scholar 

  • Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W (2019) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contamination: Int J 28(4):380–394. https://doi.org/10.1080/15320383.2019.1592108

    Article  CAS  Google Scholar 

  • Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS ONE 11(3):e0149750

    Article  Google Scholar 

  • Lin J, He F, Su B, Sun M, Owens G, Chen Z (2019) The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J Hazard Mat 379:120832. https://doi.org/10.1016/j.jhazmat.2019.120832

    Article  CAS  Google Scholar 

  • Ling T, Fangke Y, Jun R (2010) Effect of mercury to seed germination, coleoptile growth and root elongation of four vegetables. Res J Phytochem 4:225–233. https://doi.org/10.3923/rjphyto.2010.225.233

    Article  CAS  Google Scholar 

  • Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper induced hydrogen peroxide upregulation of a metallothioneins gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99–108

    Article  CAS  Google Scholar 

  • Liu Q, Wang F, Meng F, Jiang L, Li G, Zhou R (2018) Assessment of metal contamination in estuarine surface sediments from Dongying City, China: use of a modified ecological risk index. Marine Pollut Bullet 126:293–303

    Article  CAS  Google Scholar 

  • Liu S, Yang B, Liang Y, Xiao Y, Fang J (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Poll Res 27(14):16069–16085

    Article  CAS  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Zandalinas SI, Gómez-Cadenas A (2014) Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants. Plant Biol 16(1):79–87

    Article  Google Scholar 

  • Lotfy SM, Mostafa AZ (2014) Phytoremediation of contaminated soil with cobalt and chromium. J Geochemical Explor 144:367–373. https://doi.org/10.1016/j.gexplo.2013.07.003

    Article  CAS  Google Scholar 

  • Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, Li X (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazardous Mat 186(1):481–490. https://doi.org/10.1016/j.jhazmat.2010.11.024

    Article  CAS  Google Scholar 

  • Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    Article  CAS  Google Scholar 

  • Ma X, Sharifan H, Dou F, Sun W (2020) Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chem Eng J 384:123802. https://doi.org/10.1016/j.cej.2019.123802

    Article  CAS  Google Scholar 

  • Mahanta S, Shree J, Santra SC, Moulick D, Hossain A. (2023). Deciphering of mycogenic nanoparticles by spectroscopic methods. In Myconanotechnology and Application of Nanoparticles in Biology (pp. 93–117). Academic Press.

  • Maitra S, Brestic M, Bhadra P, Shankar T, Praharaj S, Palai JB, Shah MMR, Barek V, Ondrisik P, Skalický M, Hossain A (2022) Bioinoculants—natural biological resources for sustainable plant production. Microorg 10:51. https://doi.org/10.3390/microorganisms10010051

    Article  CAS  Google Scholar 

  • Maitra S, Pine S, Banerjee P, Shankar T (2020a) Millets: Robust Entrants to Functional Food Sector. In: Bioresource Technology: Concept, Tools and Experiences (Eds. Pirzadah, Tanveer Bilal, Malik, B., Bhat, A., Hakeem, K.R., 2022a, Wiley Online Library, USA, pp.3–27

  • Maitra S, Hossain A, Banerjee P, Bhadra P (2021) The Role of Phytohormones in Heat Stress Tolerance in Plants. In: Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., Turan, V. (Rds.), Plant Growth Regulators for Climate-Smart Agriculture, CRC Press, pp.145–164

  • Majumdar A, Dubey PK, Giri B, Moulick D, Srivastava AK, Roychowdhury T, Bose S, Jaiswal MK (2023a) Combined effects of dry-wet irrigation, redox changes and microbial diversity on soil nutrient bioavailability in the rice field. Soil till Res 232:105752. https://doi.org/10.1016/j.still.2023.105752

    Article  Google Scholar 

  • Majumdar A, Upadhyay MK, Giri B, Yadav P, Moulick D, Sarkar S, Thakur BK, Sahu K, Srivastava AK, Buck M, Tibbett M (2024a) Sustainable water management in rice cultivation reduces arsenic contamination, increases productivity, microbial molecular response, and profitability. J Hazard Mater 466:133610

    Article  CAS  Google Scholar 

  • Majumdar J, Moulik D, Santra SC, Hossain A. Extremophile Bacterial and Archaebacterial Population: Metagenomics and Novel Enzyme Reserve. InMicrobial Symbionts and Plant Health: Trends and Applications for Changing Climate 2023 May 3 (pp. 521–544). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0030-5_20

  • Majumdar A, Moulick D, Srivastava S (2024b) ‘Save Soil’by managing soil nutrient losses, agronomic practices and crop-microbial interaction: World Soil Day 2022. Front Sustain Food Syst 8:1360937

    Article  Google Scholar 

  • Majumdar A, Upadhyay MK, Giri B, Moulick D, Sarkar S, Thakur B, Yadav P, Sahu K, Srivastava AK, Buck M, Tibbett M. (2023). Sustainable irrigation reduces arsenic bioavailability in fluvio-alluvial soils promoting microbial responses, high rice productivity and economic profit. https://doi.org/10.31223/X50X0Q

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872. https://doi.org/10.1007/s13762-013-0299-8

    Article  CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Env Sci Technol 39:622–654. https://doi.org/10.1080/10643380701798272

    Article  CAS  Google Scholar 

  • Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15:1–6

    Google Scholar 

  • Marwa N, Saxena G, Singh N (2019) Phytoremediational approaches to combat heavy metal pollution: a brief overview. J Environ Sci Technol 6(6):36–40

    Google Scholar 

  • Masindi V, Muedi KL (2018) Environmental Contamination by Heavy Metals. In: Heavy Metals, Hosam El-Din M. Saleh and Refaat F. Aglan, (Eds.). IntechOpen, Limited, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom. DOI: https://doi.org/10.5772/intechopen.76082

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1991a) Arsenic and selenium chemistry as affected by sediment redox potential and pH. J Environ Qual 20:522–527. https://doi.org/10.2134/jeq1991.00472425002000030004x

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1991b) Effect of redox potential and PH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419. https://doi.org/10.1021/es00020a008

    Article  CAS  Google Scholar 

  • Mazumder MK, Sharma P, Moulick D, Tata S, Choudhury S (2021) Salicylic acid ameliorates zinc and chromium induced stress responses in wheat seedlings: a biochemical and computational analysis. Cereal Res Commun. https://doi.org/10.1007/s42976-021-00201-w

    Article  Google Scholar 

  • Mazumder MK, Moulick D, Choudhury S (2022) Iron (Fe3+)-mediated redox responses and amelioration of oxidative stress in cadmium (Cd2+) stressed mung bean seedlings: a biochemical and computational analysis. J Plant Biochem Biotechnol 31(1):49–60. https://doi.org/10.1007/s13562-021-00654-4

    Article  CAS  Google Scholar 

  • McHughen A (2016) A critical assessment of regulatory triggers for products of biotechnology: Product vs. process. GM Crops Food 7(3–4):125–158. https://doi.org/10.1080/21645698.2016.1228516

    Article  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Phytoremediation, pp.97–123.

  • Mehlo L, Mazithulela G, Twyman RM, Boulton MI, Davies JW, Christou P (2000) Structural analysis of transgene rearrangements and effects on expression in transgenic maize plants generated by particle bombardment. Maydica 45(4):277–287

    Google Scholar 

  • Meng D, Li J, Liu T, Liu Y, Yan M, Hu J, Li X, Liu X, Liang Y, Liu H (2019) Effects of redox potential on soil cadmium solubility: insight into microbial community. J Environ Sci 75:224–232. https://doi.org/10.1016/j.jes.2018.03.032

    Article  CAS  Google Scholar 

  • Merlos MA, Micha´leka P, Krysˇtofova´a O, Zı´tkaa O, Adama V, Kizeka R, (2014) The role of phytochelatins in plant and animals: a review. J Met Nanotechnol 4:22–27

    Google Scholar 

  • Miclean M, Cadar O, Levei L, Senila L, Ozunu A (2018) Metal contents and potential health risk assessment of crops grown in a former mining district (Romania). J Environ Sci Health 53(9):595–601. https://doi.org/10.1080/03601234.2018.14739

    Article  CAS  Google Scholar 

  • Mitch ML (2002) Phytoextraction of toxic metals: a review of biological mechanism. J Environ Qual 31:109–120. https://doi.org/10.2134/jeq2002.1090

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller GAD, Tognetti VB, Vandepoele K, Van Breusegem F (2011) ROS signalling: the new wave. Trend Plant Sci 16(6):300–309

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contamin Toxicol. https://doi.org/10.1007/978-1-4614-1463-6_1

    Article  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. https://doi.org/10.3389/fpls.2016.00303

    Article  Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016a) An assessment of some physicochemical properties and cooking characteristics of milled rice and associated health risk in two rice varieties of arsenic contaminated areas of West Bengal, India. Int J Agric Food Sci 6(2):44–55

    Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016b) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578. https://doi.org/10.1016/j.plaphy.2016.11.004

    Article  CAS  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2017) Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L cv IET-4094). Ecotoxicol Environ Saf 145:449–456. https://doi.org/10.1016/j.ecoenv.2017.07.060

    Article  CAS  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018a) Rice seed priming with se: a novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J Hazard Mat 355:187–196. https://doi.org/10.1016/j.jhazmat.2018.05.017

    Article  CAS  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018b) Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation. Environ Sci Poll Res 25(27):26978–26991. https://doi.org/10.1007/s11356-018-2711-x

    Article  CAS  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018c) Consequences of paddy cultivation in arsenic-contaminated paddy fields of lower Indo-Gangetic plain on arsenic accumulation pattern and selected grain quality traits: a preliminary assessment. Mech of Arsenic Toxicity Tolerance Plants. https://doi.org/10.1007/978-981-13-1292-2_3

    Article  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018d) Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol Environ Safe 152:67–77

    Article  CAS  Google Scholar 

  • Moulick D, Santra SC, Ghosh D, Panda SK (2019b) An assessment of efficiency of zinc priming in rice (cv MTU-7029) during germination and early seedling growth. Priming Pretreat Seeds Seed: Implicat Plant Stress Tolerance Enhancing Product Crop Plants. https://doi.org/10.1007/978-981-13-8625-1_24

    Article  Google Scholar 

  • Moulick D, Samanta S, Saha B, Mazumder MK, Dogra S, Panigrahi KC, Banerjee S, Ghosh D, Santra SC (2020a) Salinity stress responses in three popular field crops belonging to fabaceae family: current status and future prospect. Springer, Singapore, In the plant family fabaceae. https://doi.org/10.1007/978-981-15-4752-2_20

    Book  Google Scholar 

  • Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awashy JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC (2021) Arsenic contamination, impact and mitigation strategies in rice agro-environment: an inclusive insight. Sci Total Environ 800:149477. https://doi.org/10.1016/j.scitotenv.2021.149477

    Article  CAS  Google Scholar 

  • Moulick D, Ghosh D, Gharde Y, Majumdar A, Upadhyay MK, Chakraborty D, Mahanta S, Das A, Choudhury S, Brestic M, Alahmadi TA (2024c) An assessment of the impact of traditional rice cooking practice and eating habits on arsenic and iron transfer into the food chain of smallholders of Indo-Gangetic plain of South-Asia: Using AMMI and Monte-Carlo simulation model. Heliyon 10(7):e28296

    Article  CAS  Google Scholar 

  • Moulick D, Ghosh D, Skalicky M, Gharde Y, Mazumder MK, Choudhury S, Biswas JK, Santra SC, Brestic M, Vachova P, Hossain A (2022a) Interrelationship among rice grain arsenic, micronutrients content and grain quality attributes: an investigation from genotype× environment perspective. Front Environ Sci. https://doi.org/10.3389/fenvs.2022.857629

    Article  Google Scholar 

  • Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M (2023a) The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: current status and future prospects. Front Plant Sci. https://doi.org/10.3389/fpls.2022.1083960

    Article  Google Scholar 

  • Moulick D, Choudhury S, Brestic M, Hossain A (2024d) The Impact of Abiotic Stresses on Agriculture: Mitigation through Climate Smart Strategies. Front Plant Sci 15:391051

    Google Scholar 

  • Moulick D, Ghosh D, Mandal J, Bhowmick S, Mondal D, Choudhury S, Santra SC, Vithanage M, Biswas JK (2023b) A cumulative assessment of plant growth stages and selenium supplementation on arsenic and micronutrients accumulation in rice grains. J Clean Product. https://doi.org/10.1016/j.jclepro.2022.135764

    Article  Google Scholar 

  • Moulick D, Mukherjee A, Das A, Roy A, Majumdar A, Dhar A, Pattanaik BK, Chowardhara B, Ghosh D, Upadhyay MK, Yadav P (2024b) Selenium–an environmentally friendly micronutrient in agroecosystem in the modern era: an overview of 50-year findings. Ecotoxicol Environ Safe 270:115832. https://doi.org/10.1016/j.ecoenv.2023.115832

    Article  CAS  Google Scholar 

  • Moulick D, Chowardhara B, Panda SK (2019a) Agroecotoxicological aspect of arsenic (As) and cadmium (Cd) on Field crops and its mitigation: current status and future prospect. In Plant-metal interactions. Springer, Cham. pp.217–246. https://doi.org/10.1007/978-3-030-20732-8_11.

  • Moulick D, Sarkar S, Awasthi JP, Ghosh D, Choudhury S, Tata SK, Bramhachari K, Santra SC (2020a) Rice Grain Quality Traits: Neglected or Less Addressed? In Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. 729–745. https://doi.org/10.1007/978-981-15-4120-9_29

  • Moulick D, Hazra S, Mukherjee A, Sinha S, Mahanta S, Das A, Saha B, Niazi NK, Biswas JK (2022b) Application of Nanotechnology in Mitigating Arsenic Stress and Accumulation in Crops: Where We Are and Where We Are Moving Towards. In Global Arsenic Hazard: Ecotoxicology and Remediation (pp. 247–270). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-16360-9_12

  • Moulick D, Khan FR, Siddiqui N, Pradhan J, Khamari P, Mahanta S (2024b) Applications of Nanotechnology in Abiotic Stress Management and Biofortification. In The Nanotechnology Driven Agriculture (pp. 50–66). CRC Press.

  • Muehe EM, Wang T, Kerl CF, Planer-Friedrich B, Fendorf S (2019) Rice production threatened by coupled stresses of climate and soil arsenic. Nat Comm 10(1):4985. https://doi.org/10.1038/s41467-019-12946-4

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure Modelling of Engineered Nanoparticles in the Environment. Environ Sci Technol 42:4447–4453. https://doi.org/10.1021/es7029637

    Article  CAS  Google Scholar 

  • Mukherjee A, Kundu M, Basu B, Sinha B, Chatterjee M, Bairagya MD, Sarkar S (2017) Arsenic load in rice ecosystem and its mitigation through deficit irrigation. J Environ Manage 197:89–95

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, De N (2014) Nano clay polymer composite: synthesis, characterization, properties and application in rainfed agriculture. Glob J Biosci Biotechnol 3:133–138

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geol 60(1–4):193–207

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Narejo GA, Mirbahar AA, Yasin S, Sirohi MH, Saeed R (2023) Effect of hydro and KNO3 priming on seed germination of cotton (G ossypium hirsutum L.) under gnotobiotic conditions. J Plant Growth Regul 42(3):1592–1603

    Article  CAS  Google Scholar 

  • Nessem AA, Mohsen AA, Atlam A, Ragab GA (2023) Effect of priming with natural plant extract on the growth, hormonal status, and yield value of triticum asetivum (L.) Grown under lead and nickel stress. Egypt J Bot 63(1):159–174

    Google Scholar 

  • Nevin KP, Lovley DR (2000) Lack of production of electron shuttling compounds or solubilization of Fe3+ during reduction of insoluble Fe3+ oxide by Geobacter metallireducens. Appl Environ Microbiol 66(5):2248–2251. https://doi.org/10.1128/aem.66.5.2248-2251.2000

    Article  CAS  Google Scholar 

  • Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE (2018) Identification of cell populations necessary for leaf-to-leaf electrical signalling in a wounded plant. Proceed Nat Acad Sci 115(40):10178–10183

    Article  CAS  Google Scholar 

  • Nguyen TQ, Sesin V, Kisiala A, Emery RN (2021) Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ Toxicol Chem 40(1):7–22

    Article  CAS  Google Scholar 

  • Nica DV, Bura M, Gergen I, Harmanescu M, Bordean DM (2012) Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chem Central J 6(1):1–15. https://doi.org/10.1186/1752-153X-6-55

    Article  CAS  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. In: The Arabidopsis book. Am. Soc. Plant Biol. l:1–32

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247

    Article  CAS  Google Scholar 

  • Nour HE, El-Sorogy AS, Abdel-Wahab M, Almadani S, Alfaifi H, Youssef M (2018) Assessment of sediment quality using different pollution indicators and statistical analyses, Hurghada area, Red Sea coast. Egypt Marine Pollut Bullet 133:808–813

    Article  CAS  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview. Trace Metals Other Contaminants in the Environ 9:3–60

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: Insights on induced plant toxicity. J Bot. https://doi.org/10.1155/2012/375843

    Article  Google Scholar 

  • Oskarsson A (2015) Handbook on the Toxicology of Metals 625–634 (Elsevier, 2015).

  • Osmolovskaya N, Dung VV, Kuchaeva L (2018) The role of organic acids in heavy metal tolerance in plants. Biol Comm 63(1):9–16

    Article  Google Scholar 

  • Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium Geochemistry of Serpentine Soils. Int Geol Rev 46:97–126. https://doi.org/10.2747/0020-6814.46.2.97

    Article  Google Scholar 

  • Paalman MAA, Van Der Weijden CH, Loch JPG (1994) Sorption of cadmium on suspended matter under estuarine conditions; competition and complexation with major sea-water ions. Water Air Soil Pollut 73:49–60. https://doi.org/10.1007/BF00477975

    Article  CAS  Google Scholar 

  • Pagani MA, Tomas M, Carrillo J, Bofill R, Capdevila M, Atrian S, Andreo CS (2012) The response of the different soybean metallothionein isoforms to cadmium intoxication. J Inorg Biochem 117:306–315

    Article  CAS  Google Scholar 

  • Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317(1–2):31–39. https://doi.org/10.1007/s11104-008-9786-y

    Article  CAS  Google Scholar 

  • Pang S, Duan L, Liu Z (2012) Coinduction of a glutathione-S-transferase, a glutathione transporter and an ABC transporter in maize by xenobiotics. PLoS ONE 7:e40712

    Article  CAS  Google Scholar 

  • Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Lead toxicity update. A Brief Rev Med Sci Monitor 11(10):329

    Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003a) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanalytical Chem 376(1):26–32. https://doi.org/10.1007/s00216-003-1843-z

    Article  CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003b) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32. https://doi.org/10.1007/s00216-003-1843-z

    Article  CAS  Google Scholar 

  • Parmar S, Singh V (2015) Phytoremediation approaches for heavy metal pollution: a review. J Plant Sci Res 2(2):135

    Google Scholar 

  • Pasternak M, Lim B, Wirtz M (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57(1–2):257–261. https://doi.org/10.1007/s002530100758

    Article  CAS  Google Scholar 

  • Pattnaik BK, Sahu C, Choudhury S, Santra SC, Moulick D. (2023). Importance of Soil Management in Sustainable Agriculture. In Climate-Resilient Agriculture, Vol 1: Crop Responses and Agroecological Perspectives (pp. 487–511). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-37424-1_22

  • Pattnaik, B.K., Sahu, C. and Moulick, D., Nanoparticles in Soil–Water–Plant Inference. In The Nanotechnology Driven Agriculture (pp. 85–105). CRC Press.

  • Pattnaik BK, Sahu C, Moulick D (2024) Nanoparticles in soil–water–plant inference. The nanotechnology driven agriculture. CRC Press, pp 85–105

    Chapter  Google Scholar 

  • Paul T, Saha NC (2019) Environmental arsenic and selenium contamination and approaches towards its bioremediation through the exploration of microbial adaptations: a review. Pedosphere 29(5):554–568. https://doi.org/10.1016/S1002-0160(19)60829-5

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2013) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth Discuss 5(2):65–75

    Google Scholar 

  • Peng K, Luo C, You W, Lian C, Li X, Shen Z (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L. J Hazard Mater 154:674–681. https://doi.org/10.1016/j.jhazmat.10:080

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron Environ. Sci Technol 34:2564–2569. https://doi.org/10.1021/es9911420

    Article  CAS  Google Scholar 

  • Praveen A, Khan E, Ngiimei DS, Perwez M, Sardar M, Gupta M (2018) Iron oxide nanoparticles as nanoadsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J Plant Growth Reg 37(2):612–624

    Article  CAS  Google Scholar 

  • Pushkar B, Sevak P, Singh A (2019) Bioremediation treatment process through mercury-resistant bacteria isolated from Mithi river. Appl Water Sci 9(4):117. https://doi.org/10.1007/s13201-019-0998-5

    Article  CAS  Google Scholar 

  • Qasemi M, Shams M, Sajjadi SA, Farhang M, Erfanpoor S, Yousefi M, Afsharnia M (2019) Cadmium in groundwater consumed in the rural areas of Gonabad and Bajestan, Iran: occurrence and health risk assessment. Biol Trace Elem Res 192:106–115

    Article  CAS  Google Scholar 

  • Rahman MA, Rahman MM, Reichman SM, Lim RP, Naidu R (2014) Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard. Ecotoxicol Environ Saf 100:53–60

    Article  CAS  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A (2015) Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacaeB2-DHA. J Environ Sci Health-Part a 50(11):1136–1147. https://doi.org/10.1080/10934529.2015.1047670

    Article  CAS  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediat 10:430–439. https://doi.org/10.1080/15226510802100606

    Article  CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067

    Article  CAS  Google Scholar 

  • Raj D, Maiti SK (2020) Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): an epitomized review. Environ Monitor Assess 192(2):1–20. https://doi.org/10.1007/s10661-019-8060-5

    Article  CAS  Google Scholar 

  • Raja S, Cheema HMN, Babar S, Khan AA, Murtaza G, Aslam U (2015) Socioeconomic background of wastewater irrigation and bioaccumulation of heavy metals in crops and vegetables. Agric Water Manage 158:26–34. https://doi.org/10.1016/j.agwat.2015.04.004

    Article  Google Scholar 

  • Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc-and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics J 4(7):377–383

    CAS  Google Scholar 

  • Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant 145(1):154–164

    Article  CAS  Google Scholar 

  • Reddy CN, Patrick WH Jr (1977) Effect of redox potential and ph on the uptake of cadmium and lead by rice plants. J Environ Qual 6:259–262. https://doi.org/10.2134/jeq1977.00472425000600030005x

    Article  CAS  Google Scholar 

  • Reniero D, Mozzon E, Galli E, Barbieri P (1998) Two aberrant mercury resistance transposons in the Pseudomonas stutzeri plasmid pPB. Gene 208(1):37–42. https://doi.org/10.1016/s0378-1119(97)00641-0

    Article  CAS  Google Scholar 

  • Renkou XU, Yong WANG, Tiwari D, Houyan W (2009) Effect of ionic strength on adsorption of As(III) and As(V) on variable charge soils. J Environ Sci 21:927–932. https://doi.org/10.1016/S1001-0742(08)62363-3

    Article  CAS  Google Scholar 

  • Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y, Hasanuzzaman M (2021) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plant 10(1):37

    Article  CAS  Google Scholar 

  • Rigoletto M, Calza P, Gaggero E, Malandrino M, Fabbri D (2020) Bioremediation methods for the recovery of lead-contaminated soils: a review. Appl Sci 10(10):3528. https://doi.org/10.3390/app10103528

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Rinklebe J, Tsang DC, Bashir A, Maqbool A, Tack FMG, Ok YS (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631:1175–1191

    Article  Google Scholar 

  • Rizwan M, Ali S, Malik S, Adrees M, Qayyum M, Alamri SA, Alyemeni MN, Ahmad P (2019) Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol Plantarum 41(3):1–12

    Article  CAS  Google Scholar 

  • Roberts CS, Ni F, Mitra B (2021) The zinc and iron binuclear transport center of ZupT, a ZIP transporter from Escherichia coli. Biochem 60(48):3738–3752

    Article  CAS  Google Scholar 

  • Rodriguez L, Lopez-Bellido F, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresen Environ Bull 9:328–332. https://doi.org/10.1007/s11356-019-06563-3

    Article  CAS  Google Scholar 

  • Roy, D., Ghosh, D., Chander, S., Saha, B. and Moulick, D., 2024. Herbicide Contamination in Ground Water and Their Probable Remediation. In Environmental Contaminants (pp. 111-140). Apple Academic Press.

  • Roy D, Ghosh S, Datta D, Sreekanth D, Pawar D, Mukherjee PK, Ghosh D, Santra SC, Moulick D (2023) Climate resilient weed management for crop production. climate-resilient agriculture , vol 2. Agro-biotechnological advancement for crop production. Springer International Publishing, Cham, pp 125–156

    Chapter  Google Scholar 

  • Ruotolo R, Peracchi A, Bolchi A, Infusini G, Amoresano A, Ottonello S (2004) Domain organization of phytochelatin synthase functional properties of truncated enzyme species identified by limited proteolysis. J Biol Chem 279(15):14686–14693

    Article  CAS  Google Scholar 

  • Sagbara G, Zabbey N, Sam K, Nwipie GN (2020) Heavy metal concentration in soil and maize (Zea mays L.) in partially reclaimed refuse dumpsite ‘borrow-pit’in Port Harcourt Nigeria. Environ Technol Inn 18:100745. https://doi.org/10.1016/j.eti.2020.100745

    Article  Google Scholar 

  • Saha B, Chowardhara B, Kar S, Devi SS, Awasthi JP, Moulick D, Tanti B, Panda SK (2019) Advances in heavy metal-induced stress alleviation with respect to exogenous amendments in crop plants. Priming Pretreat Seeds Seedlings: Implicat Plant Stress Tolerance Enhanc Product Crop Plants. https://doi.org/10.1007/978-981-13-8625-1_15

    Article  Google Scholar 

  • Sahoo PK, Mukherjee A (2014) Arsenic fate and transport in the groundwater-soil-plant system: an understanding of suitable rice paddy cultivation in arsenic enriched areas. In: Sengupta D (ed) Recent trends in modelling of environmental contaminants. Springer, London New York, pp 21–44

    Chapter  Google Scholar 

  • Sahoo S, Borgohain P, Saha B, Moulick D, Tanti B, Panda SK (2019) Seed priming and seedling pretreatment induced tolerance to drought and salt stress: recent advances. Priming Pretreat Seeds Seedlings. https://doi.org/10.1007/978-981-13-8625-1_12

    Article  Google Scholar 

  • Saini S, Kaur N, Pati PK (2021) Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicol Environ Saf 223:112578

    Article  CAS  Google Scholar 

  • Saini N, Dhyani S (2017) Effect of lead abundant soil on growth and yield of Oryza sativa L. Octa J. Environ. Res. 5(1).

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean: Soil, Air, Water 39:735–741. https://doi.org/10.1002/clen.201000488

    Article  CAS  Google Scholar 

  • Saleem M, Asghar HN, Zahir ZA, Shahid M (2018) Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195:606–614. https://doi.org/10.1016/j.chemosphere.2017.12.117

    Article  CAS  Google Scholar 

  • Salem DMA, Khaled A, El-Nemr A, El-Sikaily A (2014) Comprehensive risk assessment of heavy metals in surface sediments along the Egyptian Red Sea coast. The Egypt J Aqua Res 40(4):349–362

    Article  Google Scholar 

  • Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167(3):1371–1379

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126. https://doi.org/10.1093/jexbot/52.364.2115

    Article  CAS  Google Scholar 

  • Sannasi P, Kader J, Othman O, Salmijah S (2006) Single and multimetal removal by an environmental mixed bacterial isolate. Modern Multidisc Appl Microbiol Exploiting Microbes Interact. https://doi.org/10.1002/9783527611904.ch24

    Article  Google Scholar 

  • Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 128(4):484–500

    CAS  Google Scholar 

  • Santosh DT, Debnath S, Maitra S, Sairam M, Sagar LL, Hossain A, Moulick D. (2024). Alleviation of Climate Catastrophe in Agriculture Through Adoption of Climate-Smart Technologies. In Climate Crisis: Adaptive Approaches and Sustainability (pp. 307–332). Cham: Springer Nature Switzerland.

  • Sareena B, Sainia U, Koula R, Mehtaa M, Bhattacharyaa A (2014) Limitations of transgene integration and expression: Their circumvention and consequent implications in crop modification and agriculture. Sci Jet 3:64

    Google Scholar 

  • Sarkar S, Basu B, Kundu CK, Patra PK (2012) Deficit irrigation: An option to mitigate arsenic load of rice grain in West Bengal, India. Agri Ecosyst Environ 146(1):147–152. https://doi.org/10.1016/j.agee.2011.10.008

    Article  CAS  Google Scholar 

  • Sarkar S, Saha S, Ghosh S, Paul SK, Dey S, Moulick D, Santra SC, Brahmachari K (2023) Abiotic stress sensitivity and adaptation in field crops. In: Agriculture C-R (ed) Vol 2: agro-biotechnological advancement for crop production. Springer International Publishing, Cham, pp 319–362

    Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in nonoccupationally exposed population. Toxicol Lett 137(1–2):65–83. https://doi.org/10.1016/s0378-4274(02)00381-8

    Article  CAS  Google Scholar 

  • Saxena PK, KrishnaRaj S, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of heavy metal contaminated and polluted soils. Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 305–329

    Chapter  Google Scholar 

  • Sayqal A, Ahmed OB (2021) Advances in heavy metal bioremediation: an overview. Appl Bionics Biomech 11:1609149. https://doi.org/10.1155/2021/1609149

    Article  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad Biol Med 30:1191–1212

    Article  CAS  Google Scholar 

  • Schlatter C, Kissling U (1973) Acute fatal bichromate poisoning. Beitr Gerichtl Med 30:382–388

    CAS  Google Scholar 

  • Seeger M, Hernández M, Méndez V, Ponce B, Córdova M, González M (2010) Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. J Soil Sci Plant Nutr 10(3):320–332. https://doi.org/10.4067/S0718-95162010000100007

    Article  Google Scholar 

  • Semane B, Cuypers A, Smeets K (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Sen J, Prakash P, De N (2015) Nanoclay composite and phyto-nanotechnology: a new horizon to food security issue in Indian agriculture. J Global Biosci 4(5):2187–2198

    Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598. https://doi.org/10.1021/es403368j

    Article  CAS  Google Scholar 

  • Shah V, Daverey A (2020a) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774

    Article  Google Scholar 

  • Shah V, Daverey A (2020b) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774. https://doi.org/10.1016/j.eti.2020.100774

    Article  Google Scholar 

  • Shahid MA, Balal RM, Pervez MA, Abbas T, Aqeel MA, JAVAID M, Garcia-Sanchez F, (2014) Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Tur J Bot 38(5):914–926

    Article  CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074

    Article  CAS  Google Scholar 

  • Shams M, Tavakkoli Nezhad N, Dehghan A, Alidadi H, Paydar M, Mohammadi AA, Zarei A (2022) Heavy metals exposure, carcinogenic and noncarcinogenic human health risks assessment of groundwater around mines in Joghatai. Iran Int J Environ Analyt Chem 102(8):1884–1899

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753. https://doi.org/10.1016/j.envint.2005.02.003

    Article  CAS  Google Scholar 

  • Shanmugam V, Wang YW, Tsednee M (2015) Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signalling and iron-deficiency tolerance in Arabidopsis. Plant J 84:464–477

    Article  CAS  Google Scholar 

  • Shao W, Li X, Cao Q (2008) Adsorption of arsenate and arsenite anions from aqueous medium by using metal(III)-loaded amberlite resins. Hydrometallurgy 91:138–143. https://doi.org/10.1016/j.hydromet.2008.01.005

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26(2):301–313

    CAS  Google Scholar 

  • Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66:3083–3087

    Article  CAS  Google Scholar 

  • Sharma A, Kaur M, Katnoria JK, Nagpal AK (2016) Heavy metal pollution: a global pollutant of rising concern. Toxicity Waste Manag Bioremed IGI Global. https://doi.org/10.4018/978-1-4666-9734-8.ch001

    Article  Google Scholar 

  • Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yan D (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plant 9(1):100. https://doi.org/10.3390/plants9010100

    Article  CAS  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P, Vig AP (2010) Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: an overview. Plant metal interaction (emerging remediation techniques) Elsevier, New York. pp.263–283.

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 1–26.

  • Shehata SM, Badawy RK, Aboulsoud YIE (2019) Phytoremediation of some heavy metals in contaminated soil. Bull Natl Res Cent 43:189. https://doi.org/10.1186/s42269-019-0214-7

    Article  Google Scholar 

  • Shen B, Wang X, Zhang Y (2020) The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci Total Environ 711:135229. https://doi.org/10.1016/j.scitotenv.2019.135229

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001

    Article  CAS  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784

    Article  CAS  Google Scholar 

  • Shrivastava A, Barla A, Yadav H, Bose S (2014) Arsenic contamination in shallow ground water and agricultural soil ofNadia block, West Bengal. India Front Environ Sci 2:1–9

    Google Scholar 

  • Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2013) Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal (loid) s accumulation. Protoplasma 250(6):1263–1272

    Article  CAS  Google Scholar 

  • Shukla D, Trivedi PK, Nath P, Tuteja N (2016) Metallothioneins and phytochelatins: role and perspectives in heavy metal (loid) s stress tolerance in crop plants. Abiotic Stress Response Plants. 29:237–64. https://doi.org/10.1002/9783527694570.ch12

    Article  Google Scholar 

  • Siddiqui E, Pandey J (2019) Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res 26:10926–10940

    Article  CAS  Google Scholar 

  • Signes-Pastor A, Burló F, Mitra K, Carbonell-Barrachina AA (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137:504–510. https://doi.org/10.1016/j.geoderma.2006.10.012

    Article  CAS  Google Scholar 

  • Singh S, Aggarwal PK (2011) Effect of heavy metal on biomass and yield of different crop species. Ind J Agric Sci 76(11):688–691

    Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61(5):405–412

    Article  CAS  Google Scholar 

  • Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V (2011) Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasm 248:839–847

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  Google Scholar 

  • Slobodkina GB, Bonch-Osmolovskaya EA, Slobodkin AI (2007) Reduction of chromate, selenite, tellurite, and iron (III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1. Microbiology 76:530–534. https://doi.org/10.1134/S0026261707050037

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smirnova GF (2005) Distribution of bacteria resistant to oxygen-containing anions xenobiotics. Mikrobiol Z 67(5):11–18

    CAS  Google Scholar 

  • Snoeyenbos-Wet O, Nevin KP, Anderson RT, Lovley DR (2000) Enrichment of Geobacter species in response to stimulation of Fe3+ reduction in sandy aquifer sediments. Microb Ecol 39(2):153–167. https://doi.org/10.1007/s002480000018

    Article  Google Scholar 

  • Song WY, Park J, Eisenach C, Maeshima M, Lee Y, Martinoia E (2014) ABC transporters and heavy metals. Plant ABC transporters. Springer, Cham, pp 1–17

    Google Scholar 

  • Srivalli S, Khanna-Chopra R (2008) Role of glutathione in abiotic stress tolerance. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 207–225

    Chapter  Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31. https://doi.org/10.1016/j.scitotenv.2005.11.002

    Article  CAS  Google Scholar 

  • Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Poll Res 22(20):15386–15415. https://doi.org/10.1007/s11356-015-5278-9

    Article  Google Scholar 

  • Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46(3):339–345. https://doi.org/10.1007/s11099-008-0062-4

    Article  CAS  Google Scholar 

  • Suhail M, Ali I (2017) Advanced spiral periodic classification of the elements. Chem Int 3:220–224

    Google Scholar 

  • Suska-Malawska M, Vyrakhamanova A, Ibraeva M, Poshanov M, Sulwiński M, Toderich K, Mętrak M (2022) Spatial and in-depth distribution of soil salinity and heavy metals (Pb, Zn, Cd, Ni, Cu) in arable irrigated soils in southern Kazakhstan. Agronomy 12(5):1207. https://doi.org/10.3390/agronomy12051207

    Article  CAS  Google Scholar 

  • Sweta SB (2022) A review on heavy metal and metalloid contamination of vegetables: addressing the global safe food security concern. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2115890

    Article  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Reg 38(2):739–752

    Article  CAS  Google Scholar 

  • Syu CH, Huang CC, Jiang PY, Lee CH, Lee DY (2015) Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J Hazardous Mat 286:179–186. https://doi.org/10.1016/j.jhazmat.2014.12.052

    Article  CAS  Google Scholar 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Tacoli C (2017) Food (In)security in rapidly urbanizing, low-income contexts. Int J Environ Res Pub Health 14(12):1554. https://doi.org/10.3390/ijerph14121554

    Article  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH (2004) Arsenic behavior in paddy fields during the cycle of flooded and nonflooded periods. Environ Sci Technol 38:1038–1044. https://doi.org/10.1021/es034383n

    Article  CAS  Google Scholar 

  • Talukdar D, Talukdar T (2014) Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma 251:839–855

    Article  CAS  Google Scholar 

  • Tang W, Su Y, Gao Y, Zhong H (2019) Effects of farming activities on the biogeochemistry of mercury in rice-paddy soil systems. Bull Environ Contam Toxicol 102:635–642. https://doi.org/10.1007/s00128-019-02627-9

    Article  CAS  Google Scholar 

  • Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y (2020) Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci Total Environ 701:134751. https://doi.org/10.1016/j.scitotenv.2019.134751

    Article  CAS  Google Scholar 

  • Taniguchi J, Hemmi H, Tanahashi K (2000) Zinc biosorption by a zinc resistant bacterium, Brevibacterium sp. strain HZM-1. Appl Microbiol Biotechnol 54:581–588. https://doi.org/10.1007/s002530000415

    Article  CAS  Google Scholar 

  • Tavakoli-Hosseinabady B, Ziarati P, Ballali E, Umachandran K (2018) Detoxification of heavy metals from leafy edible vegetables by agricultural waste: apricot pit shell. J Environ Anal Toxicol 8(1):548

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Mole Clinical Environ Toxicol 1:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  • Tolmachov O, Subkhankulova T, Tolmacheva T (2013) Silencing of transgene expression: a gene therapy perspective. InTech.

  • Tomasini A, Santiesteban HHL (2019) The Role of the Filamentous Fungi in Bioremediation, Fungal Bioremediation. CRC Press 1st edition pp.19.

  • Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S (2018) Glutamate triggers long-distance, calcium-based plant defense signalling. Sci 361(6407):1112–1115

    Article  CAS  Google Scholar 

  • Tripathi RM, Raghunath R, Krishnamoorthy TM (1997) Dietary intake of heavy metals in Bombay city. India Sci Total Environ 208:149–159. https://doi.org/10.1016/S0048-9697(97)00290-8

    Article  CAS  Google Scholar 

  • Tripathi P, Singh PK, Mishra S, Gautam N, Dwivedi S, Chakrabarty D, Tripathi RD (2015) Recent advances in the expression and regulation of plant metallothioneins for metal homeostasis and tolerance. Environmental waste management. CRC Press, Boca Raton, pp 551–564

    Google Scholar 

  • Tunali S, Akar T, Ozcan AS, Kiran I, Ozcan A (2006) Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47(3):105–112. https://doi.org/10.1016/j.seppur.2005.06.009

    Article  CAS  Google Scholar 

  • Tyagi S, Yadav P, Chakraborty A, Majumdar A, Moulick D, Santra SC, Upadhyay MK, Sahoo U, Maitra S, Hossain A. (2023). Myconanotechnologies: an approach towards sustainable agriculture. In Myconanotechnology and Application of Nanoparticles in Biology (pp. 139–157). Academic Press. https://doi.org/10.1016/B978-0-443-15262-7.00005-X

  • Tyler LD, Mcbride MB (1982) Mobility and extractability of cadmium, copper, nickel, and zinc in organic and mineral soil columns. Soil Sci 134:198–205

    Article  CAS  Google Scholar 

  • Ukah BU, Egbueri JC, Unigwe CO, Ubido OE (2019) Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. Int J Energy Water Res 3:291–303

    Article  Google Scholar 

  • USEPA I (2011) US Environmental Protection Agency’s integrated risk information system Environmental protection agency region I, Washington DC 20460

  • Usha B, Prashanth SR, Parida A (2007) Differential expression of two metallothionein encoding genes during heavy metal stress in the mangrove species, Avicennia marina (Forsk.) Vierh. Curr Sci 93:1215–1219

    CAS  Google Scholar 

  • Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108

    Article  CAS  Google Scholar 

  • Usha B, Keeran NS, Harikrishnan M, Kavitha K, Parida A (2011) Characterization of type 3 metallothionein isolated from Porteresia coarctata. Biol Plant 55:119–124

    Article  CAS  Google Scholar 

  • Vivares D, Arnoux P, Pignol D (2005) A papain-like enzyme at work: native and acylenzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci 102(52):18848–18853

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Progr 11(3):235–50

    Article  CAS  Google Scholar 

  • Volk J, Yerokun O (2016) Effect of Application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture. https://doi.org/10.3390/agriculture6040064

    Article  Google Scholar 

  • Wang HC, Wu JS, Chia JC, Yang CC, Wu YJ, Juang RH (2009) Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J Agric Food Chem 57(16):7348–7355

    Article  CAS  Google Scholar 

  • Wang ZY, Nie HL, Tie S (2011) Effects of excess copper on the oxidative stress in roots of maize. Afr J Agric Res 6:4998–5004

    Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012a) Remediation of mercury contaminated sites–a review. J Hazard Mater 221:1–18. https://doi.org/10.1016/j.jhazmat.2012.04.035

    Article  CAS  Google Scholar 

  • Wang M, Chen L, Chen S, Ma Y (2012b) Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotox Environ Safe 79:48–54

    Article  CAS  Google Scholar 

  • Wang Q, Yi Q, Hu Q, Zhao Y, Nian H, Li K, Yu Y, Izui K, Chen L (2012c) Simultaneous overexpression of citrate synthase and phosphoenolpyruvate carboxylase in leaves augments citrate exclusion and Al resistance in transgenic tobacco. Plant Mol Biol Rep 30(4):992–1005

    Article  CAS  Google Scholar 

  • Wang R, Gao F, Guo BQ, Huang JC, Wang L, Zhou YJ (2013) Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 14(6):11125–11144

    Article  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176

    Article  Google Scholar 

  • WHO (2011) Guidelines for Drinking Water Quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Wierzba S (2015) Biosorption of lead (II), zinc (II) and nickel (II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Polish J Chem Technol 17(1):79–87. https://doi.org/10.1515/pjct-2015-0012

    Article  CAS  Google Scholar 

  • Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nut 7(6):4199–239. https://doi.org/10.3390/nu7064199

    Article  CAS  Google Scholar 

  • Witkowska D, Słowik J, Chilicka K (2021) Heavy metals and human health: possible exposure pathways and the competition for protein binding sites. Mol 26(19):6060. https://doi.org/10.3390/molecules26196060

    Article  CAS  Google Scholar 

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36:169–182

    Article  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  Google Scholar 

  • Xu T, Nan F, Jiang X, Tang Y, Zeng Y, Zhang W (2020a) Effect of soil pH on the transport, fractionation, and oxidation of chromium(III). Ecotoxicol Environ Saf 195:110459. https://doi.org/10.1016/j.ecoenv.2020.110459

    Article  CAS  Google Scholar 

  • Xu T, Nan F, Jiang X, Tang Y, Zeng Y, Zhang W, Shi B (2020b) Effect of soil PH on the transport, fractionation, and oxidation of chromium(III). Ecotoxicol Environ Saf 195:110459. https://doi.org/10.1016/j.ecoenv.2020.110459

    Article  CAS  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932. https://doi.org/10.1016/j.chemosphere.2011.02.044

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. https://doi.org/10.3389/fpls.2020.00359

    Article  Google Scholar 

  • Yang Z, Chu C (2011) Towards understanding plant response to heavy metal stress. Abiotic Stress in Plants-Mech Adapt 10:24204

    Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70(1):219–229

    Article  CAS  Google Scholar 

  • Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984. https://doi.org/10.1007/s11356-015-4233-0

    Article  CAS  Google Scholar 

  • Ybarra GR, Webb R (1999) Effects of divalent metal cations and resistance mechanisms of the cyanobacterium Synechococcus sp. strain PCC 7942. J Hazard Subst Res 2:1–9. https://doi.org/10.4148/1090-7025.1011

    Article  Google Scholar 

  • Ye J, Luo Y, Sun J, Shi J (2021) Nanoscale zero-valent iron modified by bentonite with enhanced Cr(VI) removal efficiency, improved mobility, and reduced toxicity. Nanomat 11(10):2580. https://doi.org/10.3390/nano11102580

    Article  CAS  Google Scholar 

  • Yilmaz K, Akinci İE, Akinci S (2009) Effect of lead accumulation on growth and mineral composition of eggplant seedlings (Solarium melongena). New Zealand J Crop Horticul Sci 37(3):189–199. https://doi.org/10.1080/01140670909510264

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Ahmad A (2012) 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. Plant Physiol Biochem 57:143–153

    Article  CAS  Google Scholar 

  • Zaghloul M (2020) Phytoremediation of heavy metals principles, mechanisms, enhancements with several efficiency enhancer methods and perspectives: a review. Middle East J 9(1):186–214

    Google Scholar 

  • Zagorchev L, Charlotte E, Seal CE (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  Google Scholar 

  • Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in Southeast Asia. Environ Geochem Health 26:343–357. https://doi.org/10.1007/s10653-005-4669-0

    Article  CAS  Google Scholar 

  • Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 20(5):566

    Google Scholar 

  • Zengin FK, Kirbag S (2007) Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J Environ Biol 28(3):561

    CAS  Google Scholar 

  • Zeroual Y, Moutaouakkil A, Blaghen M (2001) Volatilization of mercury by immobilized bacteria (Klebsiella pneumoniae) in different support by using fluidized bed bioreactor. Curr Microbiol 43(5):322–327. https://doi.org/10.1007/s002840010310

    Article  CAS  Google Scholar 

  • Zhang J, Gao X (2015) Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: distributions, sources and contamination assessment. Mar Pollut Bull 98(1–2):320–327

    Article  Google Scholar 

  • Zhang WJ, Lin MF (2020a) Influence of redox potential on leaching behavior of a solidified chromium contaminated soil. Sci Total Environ 733:139410. https://doi.org/10.1016/j.scitotenv.2020.139410

    Article  CAS  Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2010) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa coexpressing glutathione S-transferase and human P450 2E1. J Hazard Mat 260:1100–1107

    Article  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Poll Res 20(12):8472–8483

    Article  CAS  Google Scholar 

  • Zhang J, Zhang M, Tian S, Lu L (2014a) Shohag MJI (2010) Metallothionein 2 (SaMT2) from Sedum alfredii confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS ONE 9(7):102750

    Article  Google Scholar 

  • Zhang J, Zhang M, Tian S, Lu L, Shohag MJI (2014b) Metallothionein 2 (SaMT2) from Sedum alfredii confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS ONE 9(7):102750

    Article  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annual Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zhao C, Xu J, Li Q, Li S, Wang P, Xiang F (2014) Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue. PLoS ONE 9(8):103771

    Article  Google Scholar 

  • Zheng S, Wang Q, Yuan Y, Sun W (2020) Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem 316:126213

    Article  CAS  Google Scholar 

  • Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57(14):3575–3582

    Article  Google Scholar 

  • Zhou Q, Wang X, Liang R, Wu Y (2003) Effects of cadmium and mixed heavy metals on rice growth in Liaoning. China Soil Sediment Contamin 12:851–864

    Article  CAS  Google Scholar 

  • Zhou M, Liu Y, Zeng G, Li X, Xu W, Fan T (2007) Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World J Microbiol Biotechnol 23(1):43–48. https://doi.org/10.1007/s11274-006-9191-8

    Article  CAS  Google Scholar 

  • Zhou P, Adeel M, Shakoor N, Guo M, HaoY AI, Li M, Liu M, Rui Y (2020) Application of nanoparticles alleviates heavy metals stress and promotes plant growth: an overview. Nanomat 11(1):26. https://doi.org/10.3390/nano11010026

    Article  CAS  Google Scholar 

  • Zhu H, Chen C, Xu C, Zhu Q, Huang D (2016) Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ Pollut 219:99–106. https://doi.org/10.1016/j.envpol.2016.10.043

    Article  CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine. South China Sci Total Environ 407(5):1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061

    Article  CAS  Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ (2019) Lead toxicity in plants: Impacts and remediation. J Environ Manag 250:109557. https://doi.org/10.1016/j.jenvman.2019.109557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funded projects APVV-20-0071 and EPPN2020-OPVaI-VA-ITMS313011T813.

Funding

This is a collaborative write-up to provide information on the abiotic stress response in plants. This publication was supported by the Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak Republic, under the projects ‘APVV-20–0071 and EPPN2020-OPVaI-VA-ITMS313011T813’.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.M., B.C., A.M., B.K.P., P.R., Su.M., S.H., S.S., So.G., Sa.G., K.L.B., Sh.C., D.G., S.C.S., B.P., S.K., K.A., M.H.S., D.D., T.S., U.S., Sa.M. and A.H.; writing-original draft preparation: D.M., B.C., A.M., B.K.P., P.R., Su.M., S.H., S.S., So.G., Sa.G., K.L.B., Sh.C., D.G., S.C.S., B.P., S.K., K.A., M.H.S., D.D., T.S., U.S., Sa.M., and A.H.; review and editing: M.B., M.S., V.B. and A.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. Hossain.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Informed consent

Not applicable.

Institutional review board statement

Not applicable.

Additional information

Editorial responsibility: Tanmoy Karak.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulick, D., Hossain, A., Barek, V. et al. Heavy metal stress in the agro-environment: consequences, adaptations and remediation. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-05657-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13762-024-05657-x

Keywords

Navigation